Компаратор напряжения как работает: Компараторы, как они работают? — Начинающим — Теория

Компараторы, как они работают? — Начинающим — Теория

Общие сведения.

Компаратор — это операционный усилитель без обратной связи с большим коэффициентом усиления.
Поэтому, если подать на один его вход (например инверсный) какой то постоянный уровень опорного напряжения, а на другой вход (прямой) изменяющийся сигнал — выходное напряжение у него изменится скачком, от минимального до максимального в тот момент, когда уровень входного сигнала превысит уровень сигнала опорного напряжения, установленного на другом входе, и наоборот.

Компараторы имеют два входа, прямой и инверсный, и в зависимости от желаемого результата, опорное и сравниваемое напряжения, могут подключаться к любому входу.
Если входное напряжение на прямом входе, превысит напряжение инверсного входа, выходной транзистор компаратора открывается, если станет ниже — закрывается. То есть компаратор сравнивает напряжения.
Вот мы и подошли к сути основного назначения компаратора — сравнивать между собой два напряжения (сигнала), и выдавать на выходе напряжение (сигнал) в том случае, когда сигнал на одном входе, стал больше или меньше уровня, установленного опорным напряжением другого входа.
На компараторах можно собирать различные устройства, такие как терморегуляторы, стабилизаторы, различные устройства автоматики — используя для изменения входного сигнала различные датчики, такие как, терморезисторы, фоторезисторы, индикаторы влажности и т.д. и т.п.
Выходные каскады компараторов рассчитаны таким образом, чтобы их выходное напряжение соответствовало бы входному логическому уровню многих цифровых микросхем, поэтому их ещё могу называть формирователями.
В принципе на любом операционном усилителе можно построить компаратор (но не наоборот).
Рассмотрим самый распространённый компаратор К554СА3, (зарубежные аналоги LM-111, LM-211, LM-311).
На выходе этого компаратора включен транзистор с открытыми коллектором и эмиттером, и в зависимости от необходимого результата на выходе, его можно подключать по схеме с общим эмиттером или эмиттерным повторителем.
Схема включения компаратора для одно-полярного питания изображена на рисунке 1, для двух-полярного питания на рисунке 2.

Рисунок 1.
Схема включения компаратора в одно-полярное питание.
а — с общим эмиттером; б — эмиттерным повторителем.
Напряжение питания +5 вольт указано для уровня логики ТТЛ микросхем.

Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.

Рисунок 2.
Схема включения компаратора в двух-полярное питание.
а — с общим эмиттером; б — эмиттерным повторителем.

В качестве нагрузки компаратора можно использовать любую нагрузку с током потребления не более 50 мА. Это могут быть непосредственно обмотки реле, резисторы, светодиоды индикации и оптронов исполнительных устройств, с ограничивающими ток резисторами. Индуктивные нагрузки желательно шунтировать диодами от обратного выброса напряжения.
Напряжение питания компаратора может быть 5 — 36 вольт одно-полярного (или сумма двух-полярного) напряжения.

Процессы переключения компараторов.

Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый «дребезг»).
Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.
Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.

Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).

На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;

Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью «дребезг» выходного напряжения.

Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.

Компараторы. Устройство и работа. Виды и применение. Особенности

Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.

По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины. Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции. Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.

Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.

Принцип работы и виды интегральных компараторов

Компараторы с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает. В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.

На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.

При выборе компаратора следует обратить внимание на следующие параметры:
  • Диапазон напряжения питания.
  • Диапазон входных напряжений.
  • Максимальный ток на выходе компаратора.
  • Тип выхода.

Не все компараторы могут установить плюс питания на выходе.

Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.

Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.

Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.

Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.

Обозначения выводов выглядят следующим образом:

Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется. Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.

При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В. Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.

При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.

Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.

Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.

Работа компаратора напряжения

В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.

С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.

Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.

Характеристики компараторов

При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.

Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.

Устройство

Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.

Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».

Компаратор с памятью и стробированием

Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.

Простая схема структуры устройства со стробированием:

Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.

Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.

Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.

Классификация

Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.

Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.

Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора. Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства. Напряжение входа подается на неинвертирующие входы, которые соединены вместе.

В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.

Похожие темы:

как работает, на операционном усилителе, микросхема

Слово «компаратор» произошло от латинского «comparare» и в буквальном русском переводе означает «сравнивать». Он производится в разнообразных модификациях, которые востребованы современной электронной промышленностью. Самые простые конструкции для сравнения контролируемых данных обладают 2-мя входами аналогового типа и одним цифровым. Базу его функционирования обеспечивает дифференциальный каскад, имеющий мощные усилительные характеристики. Компаратор напряжения довольно востребованное устройство и используется в областях, связанных с измерениями либо которые используют превращение сигнала из аналогового в цифровой.

Что такое компаратор напряжения

Принцип функционирования компаратора напряжения (КН) можно сравнить с весами рычажного типа. Когда на одну чашу весов укладывается эталонная гиря, а на другую — измеряемый продукт. В то время, когда вес продукта будет одинаковым с массой контрольного веса, чаша с эталонным весом поднимается выше, после чего процесс взвешивания заканчивается.

Применение компараторов

В КН вместо гирь функционирует основное напряжение, а продукт заменяет входящий сигнал. Когда образуется логическая «1» на выходе компаратора, начинается процесс сопоставления значений напряжения. Для проверки такого прибора не потребуется выполнения трудозатратной схемы. Достаточно подключить выходной вольтметр, а на вводы — регулируемое напряжение. При смене входных параметров на вольтметре будет видима функциональность КН, параметры настройки задаются схемой.

Принцип работы компаратора

Самым простым прибором считается компаратор, который сопоставляет напряжение, поступающее на один из входов, с базовым показателем, присутствующим на ином входе. Примитивный компаратор напряжения на операционном усилителе (ОУ) — без обратной связи.

Принцип работы

КН выполнен в виде электронной схемы с 2-мя входящими напряжениями и может устанавливать большее значение. Просто выполнить модели КН из ОУ, так как полярность выходящей электроцепи операционного усилителя исходит от полярности разности показателей напряжения на 2-х входах.

Представим, что существует фотоэлемент, который производит 0.5 В под воздействием солнечного света, и необходимо применять данный фотоэлемент в роли измерителя для установления периода дневного освещения. В таких случаях лучший вариант — применять КН, чтобы сопоставить напряжение от фотоэлемента с контролируемым показателем 0.5 В.

В цепи КН, первоначальное опорное напряжение поступает на инвертирующем вводе (U -), после напряжение, которое будут сравнивать с опорным, поступает на неинвертирующий ввод. Выходное значение исключительно зависит от входного размера по отношению к опорному напряжению.

Схема компаратора

Схема компаратора:

  • Менее эталонного — отрицательный;
  • равноправный опорному — «0»;
  • более эталонного значения — положительный.

ОУ компаратора сравнивает один уровень аналогового напряжения с другим уровнем аналогового напряжения или каким-либо опорным напряжением, и выдает выходной сигнал на основе этого сравнения напряжения. Другими словами, компаратор напряжения ОУ сопоставляет данные 2-х входов и определяет наибольший, простота и эффективность этой схемы проверена на практике и реализована в многих бытовых приборах.

Положительная обратная связь

Компараторы напряжения либо используют положительную обратную связь, либо вообще не используют ее в режиме разомкнутого контура. Затем выходной сигнал КН подается полностью на его положительную шину питания + Ucc или на отрицательную шину питания —Ucc, при приложении переменного входного сигнала, который проходит некоторое предварительно установленное пороговое значение.

КН (-) обратной связью

Параметры прибора

На самом деле, прибор можно расценивать как простейший вольтметр. КН, подобно цифровому прибору, обладает рядом эксплуатационных качеств, подразделяемые на 2 разновидности: статические и динамические.

Параметры прибора

Первые обладают следующими характеристиками:

  • Максимальная чувствительность по отношению к пороговым размерам сигнала, которые КН устанавливает на входе и заменяет потенциал выхода устройства на логический «0» либо «1».
  • Размер смещения устанавливается передаточным фактором прибора в отношении установленного образцового положения.
  • Входной ток — предельное значение, способное протекать с использованием любого вывода, при этом, не нанеся повреждение прибору.
  • Выходной ток — размер тока, во время перехода измерителя в положение «1».
  • Разность токов — результат, определяемый при вычитании токовых данных.
  • Гистерезис — разница в уровнях входящего сигнала, которая приводит к изменению стабильного выходного состояния.
  • Коэффициент понижения сигнала рассчитывается по отношению к дифференциальному сигналу, которые приводят к смене варианта функционирования измерителя.
  • Наименьшая и наибольшая номинальная температура — интервал, в котором технологические характеристики прибора не будут изменяться.

Гистерезис компаратора

Обратите внимание! Все основные параметры КН изображаются в форме параметров переходного типа. Это диаграмма, где по оси Х обозначается время, а Y — напряжение в вольтах.

Как обозначается компаратор на схемах

На схемах компаратора и в электротехнических схемах графическое обозначение измерителя выполняется в форме треугольника, имеющего три выхода. Они обозначаются символами «+» и «-», соответствующих неинвертирующим/инвертирующим показателям, также представляется выходной маркирующий знак «Uout».

Обозначение на схемах

Когда (+) на входе микрочипа, степень сигнала станет больше, чем конкретно на инверсном ( — ), то на выводе будет образовываться устойчивое значение. Исходя из схемотехнической базы компаратора, это число имеет возможность принимать вариант логического «0» либо «1». В цифровых электронных устройствах за «12» принимается сигнал, степень напряжения которого имеет 5В, а за «0» установлено его отсутствие. Другими словами, положение выхода измерителя устанавливается как высокое либо низкое. Хотя обычно на практике за логический «0» принимают разность потенциалов до 2.7 В.

Где применяется компаратор напряжения

Часто КН применяют в градиентном реле — схема, которая реагирует на скорость изменения сигнала, например, фотореле. Такое устройство может использоваться в тех ситуациях, когда освещение меняется довольно стремительно. Например, в охранных установках либо датчиках контроля выпущенных изделий на конвейерах, где прибор станет реагировать на прерывание светового потока.

Еще одна часто используемая схема — датчик измерения температуры и изменения «аналогового» сигнала в «электронный». Оба измерителя преобразовывают амплитуду входящего сигнала в ширину выходящего импульса. Такое превращение довольно часто применяется в разнообразных цифровых схемах. Преимущественно, в измерительных устройствах, блоках питания импульсного типа, электронных усилителях.

Конструкция компаратора

КН нашли обширную область применения в радиоэлектронике разнообразной направленности. В магазинах радиотоваров можно увидеть огромное количество разнообразных микросхем. Но особенно часто применяемыми микросхемами у пользователей считаются:

  • LM No 339;
  • LM No 311;
  • MAX No 934;
  • К554СА3.

Они легкодоступны в торговой сети и имеют довольно бюджетную цену. Такие КН выделяются обширным спектром входных параметров. К выходу КН способна присоединяться разнообразная токовая нагрузка, как правило, не превосходящая 50.0 мА. Это могут быть микрореле, варистор, световой диод, оптрон либо абсолютно разные исполнительные модули, однако с предельными по току компонентами.

Фотореле контроля

Подобное реле выпускается методом навесного монтажа. Его применяют в охранных контролирующих системах либо для контролирования степени света. Входящее напряжение попадает на делитель R1 и фотодиод VD3. Их объединенная точка сочетания использует ограничивающие диоды VD1/ VD2, подключенные к входам DA1. В итоге входящая разность потенциалов КН будет отсутствовать, а следовательно, и восприимчивость измерителя станет максимальной.

Фотореле

Чтобы выходящий сигнал смог инвертироваться, потребуется обеспечить входную разницу в 1 мВ. По той причине, что к входу подсоединены С1 и сопротивление R1, размер U на нем станет увеличиваться с незначительной задержкой, равноправной периоду заряда С1.

Зарядный блок

Такой блок питания принимается функционировать непосредственно после сборки. Его базовые опции сводятся к установлению рабочего зарядного тока и порогов, по которым срабатывает КН. При подключении прибора зажигается световой диод, позиционирующий подачу напряжения. На протяжении процесса зарядки обязан непрерывно гореть алый световой диод, который погаснет после того, как аккумуляторная батарея будет полностью заряжена

Зарядный блок

Подводимое напряжение от питающего блока настраивается R2, а зарядный ток устанавливается с применением R4. Наладка выполняется с применением сопротивления на 160 Ом, подключающегося в параллель к контактам, которые держат батарейку. Транзистор VT1 размещается на радиаторе, взамен его можно применять КТ814Б. Подобную схему надо будет комплектовать на плате с размером не более 50×50 мм.

Кварцевый генератор

Этот генератор ортогональных импульсов выполняется с использованием российского компаратора K544C3, функционирующего на тактовой гармонике 32.768 Гц. Схема станет рабочей в спектре входящего напряжения 7-11В с частотой установленной кварцем ZQ1. Тем не менее, для эксплуатации такого девайса сверх 50.0 кГц потребуется понизить значение R5-R6.

Генератор

При замыкании другого вывода с 0-проводом КН становится подсоединённым по варианту с незакрытым коллектором, а R7 становится нагрузкой. Подстраивание частотности производится совместно, с применением C1. С применением R4 выполняется автозапуск генератора. Меняя значение R2, изменяется импульсная характеристика.

Дополнительная информация! Выбирая конденсаторы С1 или С2, генератор сможет применяться в виде бесконтактного жидкостного датчика. В роли детектора для этой цели потребуется применять микроконтроллер с ПО. Однако возможно использовать и ещё дополнительно компаратор, который станет фиксировать деформации напряжения.

Отсюда следует, что компаратор способен предназначать действия по уровням значений на собственных вводах. Когда они отличаются, то, исходя от дельты U, выход прибора меняет качественное положение. Именно такие их качества используют создатели, разрабатывая самые разные электроприборы с операционным усилителем.

Как работает компаратор на операционном усилителе(ОУ). » Хабстаб

Прежде чем начнём разбираться с компаратором, давайте вспомним, что такое операционный усилитель(ОУ). Операционный усилитель имеет пять выводов и на схемах обозначается треугольником, как показано на рисунке ниже.

Давайте подробнее рассмотрим назначение выводов:

  • два вывода для подключения питания, плюс и минус напряжения питания;
  • два входа, один неинвертирующий, обозначенный V+ и один инвертирующий, обозначенный V-;
  • один выход, обозначенный Vвых;

Скорее всего, у того кто до этого не был знаком с операционным усилителем возникнет вопрос, что такое инвертирующий и неинвертирующий вход, давайте рассмотрим это на примере.

На рисунке выше видно, что если напряжение на неинвертирующем входе больше чем на инвертирующем, то на выходе будет плюс напряжение питания.

Если, наоборот, напряжение на инвертирующем входе будет больше чем на неинвертирующем, то на выходе будет минус напряжение питания.
По сути мы рассмотрели как работает компаратор. Компаратор от английского слова compare – сравнить, то есть он сравнивает два напряжения и в зависимости от того на каком из входов оно выше, устанавливает на выходе плюс или минус напряжения питания. Также, можно сказать, что компараторэто схема включения ОУ без отрицательной обратной связи, обладающая большим коэффициентом усиления. Под отрицательной обратной связью понимают, соединение инвертирующего входа с выходом, напрямую или через электронный компонент, например, резистор, кондесатор или диод.

Для демонстрации, того как работает компаратор рассмотрим схему, изображённую ниже.

В этой схеме с помощью делителя, резисторами 10К и 100К, устанавливается на инвертирующем входе напряжение 0,45V, его ещё называют опорным. Пока напряжение на неинвертирующем входе меньше 0,45V, на выходе будет 0V и светодиод не загорится, как только напряжение на неинвертирующем входе превысит это значение, на выходе станет 5V и светодиод загорится. Таким образом, вращая потенциометр, мы можем зажигать и гасить светодиод. Схема непрактичная, но наглядная.
В одной из статей описывается как работает пиковый детектор, там как раз можно увидеть ОУ включённый как компаратор. Для увеличения можно кликнуть по фото.

Давайте немного упростим схему.

И подключим осциллограф к входам компаратора. Первый канал — неинвертирующий вход, второй — инвертирующий.

Во время хлопков в ладоши возникают всплески, если при этом амплитуда всплесков(жёлтые) превышает опорное напряжение(бирюзовый), на выходе появляется плюс напряжения питания, иначе минус.
В этом случае в качестве датчика у нас выступает микрофон, также в качестве датчика может выступать фотодиод, для включения света при низком уровне освещенности, а его мы задаем опорным напряжением.
Ранее, мы договорились, что компаратор — это схема включения ОУ без отрицательной обратной связи. Но кроме отрицательной обратной связи существует, ещё положительная обратная связь.

Схема, изображенная выше, называется инвертирующий триггер Шмитта, по сути это тот же компаратор, только с положительной обратной связью. Принцип его работы заключается в следующем, помните на осциллограмме когда жёлтые линии пересекали бирюзовую, изменялось напряжение на выходе. Так вот здесь линий, которые можно пересечь две, при превышении верхней линии на выходе появляется минус напряжения питания, если значение опустится ниже нижней линии —плюс, а в промежутке между линиями система сохраняет своё состояние.

Так же существует неинвертирующий триггер Шмитта, он изображен на схеме ниже.

Логичным вопросом будет, почему того же Отто Герберт Шмитт не устроил обычный компаратор и он изобрел свой. Ответ прост, если на вход компаратора без положительной обратной связи подать зашумленный сигнал, это вызовет множество ложных срабатываний, для того чтобы избежать этого был придуман триггер Шмитта, у которого два порога переключения.
Правда и у него тоже есть, что доработать. Хотелось бы избавиться от двуполярного питания и так как пороги срабатывания задаются с помощью делителя, то они симметричны относительно нуля, а хотелось бы выбирать их произвольно.
Пожалуй это всё, что хотелось рассказать про компараторы на ОУ, если появилось желание разобраться более подробно, добро пожаловать сюда.

характеристики и описание принципа действия, использование схем сравнения напряжения

В электронных приборах часто можно встретить различные интегральные микросхемы. Одной из них является компаратор. Его применение очень обширно: начиная от сигнализационных датчиков и заканчивая промышленной и автомобильной электроникой. Зная, как работает компаратор, можно самостоятельно собрать различные интересные схемы, например, зарядное устройство, индикаторный узел или даже генератор.

Описание и схемотехника

Несмотря на кажущуюся простоту, компаратор — куда более интересное устройство, чем может показаться на первый взгляд. В электронике им называют логическую микросхему, предназначенную для сравнения между собой двух электрических сигналов, подающихся на его вход. В зависимости от результатов этого измерения изменяется режим работы прибора.

Термин «компаратор» произошёл от латинского слова «comparare», что дословно переводится на русский язык как сравнивать. Конструктивно устройство может выпускаться в различных корпусах, например, DIP, SOIC, SSOP. Простейшего вида сравнивающий элемент имеет два аналоговых входа и один цифровой выход. В основе его работы лежит дифференциальный каскад, имеющий высокий коэффициент усиления. Поэтому компараторы широко используются в оборудовании, предназначенном для измерения или преобразования аналогового сигнала в цифровой (АЦП).

На схемах и в технической литературе графически устройство обозначается в виде равнобедренного треугольника с тремя выводами. С одной стороны выводы подписываются знаками «+» и «—», соответственно обозначающими неинвертирующий вход и инвертирующий, а с другой — изображается выход, который маркируется символом Uout.

Когда на прямом входе («+») микросхемы уровень сигнала будет больше, чем на инверсном («—»), то на её выходе образуется устойчивое значение. В зависимости от схемотехнического решения компаратора это значение может принимать вид логического ноля или единицы. В цифровой электронике за единицу считается сигнал, уровень напряжения которого составляет пять вольт, а за ноль принимается его отсутствие. То есть состояние выхода устройства определяется как высокое или низкое. Но на практике же за логический ноль принимается значение разности потенциалов до 2,7 В.

Один из входных сигналов, подаваемых на прибор, называется опорным или пороговым напряжением. Именно с этим значением и сравнивается величина сигнала на втором входе. Опорное напряжение может подаваться как на инверсный, так и прямой вход. В зависимости от этого компараторы называются инвертирующими или неинвертирующими. Когда прибор работает с одним опорным напряжением, его называют однопороговым, а если с разным — многовходовым.

Характеристики прибора

По сути, устройство можно рассматривать как простой вольтметр или АЦП. Компаратор, как и любой электронный прибор, имеет ряд технических характеристик, которые можно разделить на два вида: статические и динамические.

К статическим параметрам относятся следующие характеристики:

  1. Предельная чувствительность обозначает пороговые величины сигнала, которые прибор идентифицирует на входе и изменяет потенциал своего выхода на логический ноль или единицу.
  2. Величина смещения определяется передаточным моментом устройства относительно идеального положения.
  3. Входной ток — максимальное его значение, которое может пройти через любой вывод, не повредив устройства.
  4. Выходной ток — значение тока, появляющееся на выходе при переходе устройства в состояние единицы.
  5. Разность токов — это величина, находимая при вычитании значений токов, протекающих при закороченных входах.
  6. Гистерезис — разность уровней входного сигнала, приводящая к изменению устойчивого состояния на выходе.
  7. Коэффициент снижения синфазного сигнала определяется отношением синфазного и дифференциального сигнала, приводящим к переключению режима работы компаратора.
  8. Входной импеданс — полное сопротивление входа.
  9. Минимальная и максимальная рабочая температура — диапазон, в котором технические параметры устройства не изменяются.

Важной же динамической характеристикой является время переключения tn. Она определяется интервалом времени от начала сравнения входного сигнала до момента, при котором на выходе компаратора наступает противоположное устойчивое состояние. Это время определяется при одном значении порогового напряжения и его скачке на противоположном входе. Этот интервал времени разделяется на две части — задержки и нарастания.

Все значимые параметры компаратора представляются в виде переходной характеристики. Это график в декартовой плоской системе координат, в которой по оси Х указывается время в наносекундах, а Y — входное и выходное напряжение в вольтах.

Устройство и принцип работы

Схемотехника устройства построена на базе дифференциального операционника с довольно большим коэффициентом усиления. Её различия с простым линейным усилителем заключаются в выполнении входного и выходного каскада.

Вход устройства выдерживает сигнал в широком диапазоне до значений источника питания и полный интервал синфазных напряжений. Выход компаратора совместим с технологиями ТТЛ и ЭСЛ из-за возможности выполнения этого каскада на транзисторе с открытым коллектором. При работе устройства не используется отрицательная обратная связь как в операционном усилителе, а, наоборот, выход охватывается положительной связью, формирующей гистерезисную передаточную характеристику.

Двухпороговый компаратор называется триггером Шмита или троичным. Для сравнения в нём используется два напряжения. Сигналы в двоичном компараторе разделяются на три диапазона:

  1. Urf2 > Urf1;
  2. Uout1 = 0 при Uin < Uref1 или Uout1 = 1, если Uin > Uref1;
  3. Uout2 = 0 при Uin < Uref2 или Uout1 = 1, если Uin > Uref2.

Uref — напряжение нижнего и верхнего порогов переключения, Uout — уровень выходного сигнала, Uin — напряжение на входе прибора.

Внутренняя схема устройства представляет собой усилитель, собранный на транзисторах VT1-VT2, который нагружен каскадом VT5-VT6, включённым по схеме с общим эмиттером. Через дополнительный ключ VT4 происходит управление коллекторным режимом работы входного сигнала. А через транзистор VT7, работающий в диодном режиме, контролируется уровень сигнала на VT8, что позволяет добиваться его независимости от изменений напряжения питания. Ключи VT5 и VT6 соединяются со стабилитроном VD1. Поэтому через повторитель VT8 входной сигнал поступает на выход с коллекторного вывода VT6.

Если входной сигнал не превышает один вольт, то транзистор VT6 закрыт, а VT5 находится в режиме насыщения. Выходной сигнал не сможет превысить четырёх вольт, так как при большей величине откроется диод. При обратном знаке VT6 насытится, и напряжение на выходе станет равным нулю. В современных устройствах используется стробирующий выход или триггеры-защелки, то есть элементы, контролирующие выход компаратора при обнаружении синхроимпульса. Результаты сравнения могут появляться в двух видах: во время строба или в паузах между импульсами.

Простые конструкции

На практике компараторы напряжения нашли широкое применение в радиоэлектронных схемах различного направления. В радиомагазинах можно встретить довольно большое количество различных микросхем. Но наиболее часто используемыми микросхемами среди радиолюбителей являются:

  • LM311;
  • К554СА3;
  • LM339;
  • MAX934.

Они доступны в продаже, а их стоимость более чем демократична. Такие компараторы отличаются широким диапазоном входного напряжения и могут работать при однополярном и двуполярном питании.

К выходу устройства может подключаться любая нагрузка с током потребления, обычно не превышающим 50 мА. Это может быть реле, резистор, светодиод, оптрон или любые исполнительные устройства, но с ограничивающими ток элементами. А также возможно подключить и индуктивную нагрузку, но она обычно в этом случае шунтируется диодами. Для работы устройства применяются источники питания с выходным напряжение 5−36 вольт.

Фотореле контроля

Такое реле собирается навесным монтажом. Его можно использовать в охранной системе или для контроля уровня освещённости. Работа схемы заключается в следующем. Входное напряжение поступает на делитель, состоящий из R1 и фотодиода VD3. Их общая точка соединения через ограничительные диоды VD1 и VD2 подключается к входам компаратора DA1. В результате этого разница потенциалов на входе устройства отсутствует, а значит, и чувствительность прибора максимальная.

Для того чтобы сигнал на выходе инвертировался, понадобится создать разницу на входе всего в один милливольт. Из-за того, что к инверсному входу подключён конденсатор С1 и резистор R1, величина напряжения на нём будет возрастать с небольшой задержкой, равной времени заряда конденсатора.

Но этого времени хватит, чтобы на выходе появилась логическая единица, которая перестроит режим работы реле подключённого в качестве нагрузки. Как только освещение опять поменяется, ситуация повторится. Таким образом, направив фотореле на какое-то место, в случае изменения его освещённости на входах компаратора появится разность напряжения. Соответственно будет изменяться и работа реле, к которому может подключаться различного рода нагрузка.

Зарядный блок

Выполненный блок питания из исправных элементов начинает работать сразу. Его настройки сводятся лишь к установке номинального тока заряда и порогов срабатывания компаратора. При включении устройства загорается зелёный светодиод, обозначающий подачу питания. Во время зарядки должен же постоянно светиться красный светодиод, который потухнет, как только аккумулятор зарядится.

Подаваемое напряжение от блока питания регулируется R2, а ток зарядки выставляется R4. Настройка происходит с помощью резистора на 150 Ом, включающегося параллельно контактам держателя батарейки. Сам аккумулятор в него не ставится. Транзистор VT1 устанавливается на радиатор, вместо него можно использовать аналог КТ814Б.

Такую схему придётся собирать на печатной плате, но в итоге её размер не должен превысить 50 х 50 мм.

Можно собрать схему попроще, используя принцип работы стабилизатора тока. Подача опорного напряжения на вход LM358 происходит через стабилитрон. Второй вход микросхемы подключается после датчика тока. Если к выходу компаратора подключить разряженный аккумулятор, то в цепи начнёт возрастать ток, а часть напряжения упадёт на низкоомном резисторе.

Между двумя входами микросхемы возникнет разность напряжения. Схема начнёт компенсировать это различие, увеличивая силу тока на выходе. В процессе заряда аккумулятора напряжение на входе начнёт уменьшаться, что приведёт к снижению тока в цепи. Как только батарея зарядится, транзистор VT1 закроется и нагрузка отключится. Ток заряда же ограничивается с помощью изменения сопротивления R1.

Кварцевый генератор

Такой генератор прямоугольных импульсов, собранный по схеме на отечественном компараторе K544C3, работает на тактовой частоте 32768 Гц. Схема будет работоспособной в диапазоне входного напряжения от 7 до 11 вольт. Частота задаётся кварцем ZQ1, но для работы устройства свыше 50 кГц понадобится уменьшить сопротивление R5 и R6.

При замыкании второго вывода с нулевым проводом выход компаратора оказывается включённым по схеме с открытым коллектором, в которой R7 является нагрузкой. Подстройка частоты выполняется с помощью C1. За счёт резистора R4 происходит автозапуск генератора. Изменяя сопротивление R2, меняется скважность импульсов.

Подбирая ёмкости С1 и С2, генератор можно использовать как бесконтактный датчик жидкости. В качестве детектора для этого понадобится использовать микроконтроллер с программным обеспечением. Хотя можно применить и ещё один компаратор, который будет регистрировать изменения, выпрямленного диодами напряжения.

Таким образом, компаратор напряжения предназначен для сравнения уровней сигналов на своих входах. Если они начинают различаться, то в зависимости от этой разности выход устройства изменяет своё состояние. Этим их свойством и пользуются разработчики, конструируя различные электроприборы.

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:

Данная иллюстрация взята из даташита микросхемы [PDF].

На практике компараторы чаще всего используют одним из следующих образов:

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y), ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

Метки: Электроника.

Как работает компаратор напряжения — Яхт клуб Ост-Вест

Общие сведения

Компаратор – это сравнивающее устройство. Аналоговый компаратор предназначен для сравнения непрерывно изменяющихся сигналов. Входные аналоговые сигналы компаратора суть Uвх – анализируемый сигнал и Uоп – опорный сигнал сравнения, а выходной Uвых – дискретный или логический сигнал, содержащий 1 бит информации:

(1)

Выходной сигнал компаратора почти всегда действует на входы логических цепей и потому согласуется по уровню и мощности с их входами. Таким образом, компаратор – это элемент перехода от аналоговых к цифровым сигналам, поэтому его иногда называют однобитным аналого-цифровым преобразователем.

Неопределенность состояния выхода компаратора при нулевой разности входных сигналов нет необходимости уточнять, так как реальный компаратор всегда имеет либо конечный коэффициент усиления, либо петлю гистерезиса (рис. 1).

Рис. 1. Характеристики компараторов

Рис. 2. Процессы переключения компараторов

Чтобы выходной сигнал компаратора изменился на конечную величину |U 1 вых – U 0 вых| при бесконечно малом изменении входного сигнала, компаратор должен иметь бесконечно большой коэффициент усиления (эпюра 1 на рис. 2) при полном отсутствии шумов во входном сигнале. Такую характеристику можно имитировать двумя способами – или просто использовать усилитель с очень большим коэффициентом усиления, или ввести положительную обратную связь.

Рассмотрим первый путь. Как бы велико усиление не было, при Uвх близком к нулю характеристика будет иметь вид рис. 1а. Это приведет к двум неприятным последствиям. Прежде всего, при очень медленном изменении Uвх выходной сигнал также будет изменяться замедленно, что плохо отразится на работе последующих логических схем (эпюра 2 на рис. 2). Еще хуже то, что при таком медленном изменении Uвх около нуля выход компаратора может многократно с большой частотой менять свое состояние под действием помех (так называемый «дребезг», эпюра 3). Это приведет к ложным срабатываниям в логических элементах и к огромным динамическим потерям в силовых ключах. Для устранения этого явления обычно вводят положительную обратную связь, которая обеспечивает переходной характеристике компаратора гистерезис (рис. 1б). Наличие гистерезиса хотя и вызывает некоторую задержку в переключении компаратора (эпюра 4 на рис. 2), но существенно уменьшает или даже устраняет дребезг Uвых.

В качестве компаратора может быть использован операционный усилитель (ОУ) так, как это показано на рис. 3. Усилитель включен по схеме инвертирующего сумматора, однако, вместо резистора в цепи обратной связи включены параллельно стабилитрон VD1 и диод VD2.

Рис. 3. Схема компаратора на ОУ

Пусть R1 = R2. Если Uвх – Uоп > 0, то диод VD2 открыт и выходное напряжение схемы небольшое отрицательное, равное падению напряжения на открытом диоде. При Uвх – Uоп m А710 (отечественный аналог – 521СА2), разработанного Р. Видларом (R.J.Widlar) в США в 1965 г., приведена на рис. 4.

Рис. 4. Схема компаратора m А710

Она представляет собой дифференциальный усилитель на транзисторах VT1, VT2, нагруженный на каскады ОЭ на VT5 и VT6. Каскад на VT5 через транзистор VТ4 управляет коллекторным режимом входного каскада и через транзистор в диодном включении VТ7 фиксирует потенциал базы транзистора VT8, делая его независимым от изменений положительного напряжения питания. Каскад на VT6 представляет собой второй каскад усиления напряжения.

Эмиттерные выводы транзисторов VT5 и VT6 присоединены к стабилитрону VD1 с напряжением стабилизации 6,2 В, поэтому потенциалы баз указанных транзисторов соответствуют приблизительно 6,9 В. Следовательно, допустимое напряжение на входах компаратора относительно общей точки может достигать 7 В. На транзисторе VT8 выполнен эмиттерный повторитель, передающий сигнал с коллектора VT6 на выход. Постоянная составляющая сигнала уменьшается до нулевого уровня стабилитроном VD2.

Если дифференциальное входное напряжение превышает +5. +10 мВ, то транзистор VT6 закрыт, а VT5 близок к насыщению. Выходной сигнал компаратора при этом не может превысить +4 В, так как для более положительных сигналов открывается диод на VT7, не допуская излишнего роста выходного напряжения и насыщения VТ5. При обратном знаке входного напряжения VT6 насыщается, потенциал его коллектора оказывается близок к напряжению стабилизации стабилитронов VD1 и VD2, а поэтому потенциал выхода близок к нулю. Транзистор VT9 – источник тока 3 мА для смещения VT8 и VD2. Часть этого тока (до 1,6 мА) может отдаваться в нагрузку, требующую вытекающий ток на входе (один вход логики ТТЛ серии 155 или 133).

В дальнейшем эта схема развивалась и совершенствовалась. Схемы многих компараторов имеют стробирующий вход для синхронизации, а некоторые модификации снабжены на выходе триггерами-защелками, т.е. схемами, фиксирующими состояние выхода компаратора по приходу синхроимпульса. Кроме того, для повышения функциональной гибкости часть ИМС компараторов (например, МАХ917-920) содержит источник опорного напряжения, а у некоторых (например, МАХ910) порог срабатывания устанавливается цифровым кодом от 0 до 2,56 В с дискретностью 10 мВ , для чего на кристалле микросхемы имеются источник опорного напряжения и 8-разрядный цифро-аналоговый преобразователь.

Выходные каскады компараторов обычно обладают большей гибкостью, чем выходные каскады операционных усилителей. В обычном ОУ используют двухтактный выходной каскад, который обеспечивает размах напряжения в пределах между значениями напряжения питания (например, +/-13 В для ОУ типа 140УД7, работающего от источников +/-15 В). В выходном каскаде компаратора эмиттер, как правило, заземлен, и выходной сигнал снимается с «открытого коллектора». Выходные транзисторы некоторых типов компараторов, например, 521СА3 или LM311 имеют открытые, т.е. неподключенные, и коллектор и эмиттер. Две основные схемы включения компараторов такого типа приведены на рис. 5.

Рис. 5. Схемы включения выходного каскада компаратора 521СА3

На рис. 5а выходной транзистор компаратора включен по схеме с общим эмиттером. При потенциале на верхнем выводе резистора равном +5 В к выходу можно подключать входы ТТL, nМОП- и КМОП-логику с питанием от источника 5 В. Для управления КМОП-логикой с более высоким напряжением питания следует верхний вывод резистора подключить к источнику питания данной цифровой микросхемы.

Если требуется изменение выходного напряжения компаратора в пределах от U + пит до U – пит, выходной каскад включается по схеме эмиттерного повторителя (рис. 5б). При этом заметно снижается быстродействие компаратора и происходит инверсия его входов.

Некоторые модели интегральных компараторов (например, AD790, МАХ907) имеют внутреннюю неглубокую положительную обратную связь, обеспечивающую их переходной характеристике гистерезис с шириной петли, соизмеримой с напряжением смещения нуля.

На рис. 6а приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 1б). Пороговые напряжения этой схемы определяются по формулам

,

Из-за несимметрии выхода компаратора петля гистерезиса оказывается несимметричной относительно опорного напряжения.

Рис. 6. Компаратор с положительной обратной связью

В заключение, перечислим некоторые особенности компараторов по сравнению с ОУ.

  1. Несмотря на то, что компараторы очень похожи на операционные усилители, в них почти никогда не используют отрицательную обратную связь, так как в этом случае весьма вероятно (а при наличии внутреннего гистерезиса – гарантировано) самовозбуждение компараторов.
  2. В связи с тем, что в схеме нет отрицательной обратной связи, напряжения на входах компаратора неодинаковы.
  3. Из-за отсутствия отрицательной обратной связи входное сопротивление компаратора относительно низко и может меняться при изменении входных сигналов.
  4. Выходное сопротивление компараторов значительно и различно для разной полярности выходного напряжения.

Двухпороговый компаратор

Двухпороговый компаратор (или компаратор «с окном») фиксирует, находится ли входное напряжение между двумя заданными пороговыми напряжениями или вне этого диапазона. Для реализации такой функции выходные сигналы двух компараторов необходимо подвергнуть операции логического умножения (рис. 7а). Как показано на рис. 7б, на выходе логического элемента единичный уровень сигнала будет иметь место тогда, когда выполняется условие U1 m А711 (отечественный аналог – 521СА1).

Рис. 7. Схема двухпорогового компаратора (а) и диаграмма его работы (б)

Параметры компараторов

Параметры, характеризующие качество компараторов, можно разделить на три группы: точностные, динамические и эксплуатационные.

Компаратор характеризуется теми же точностными параметрами, что и ОУ.

Основным динамическим параметром компаратора является время переключения tп. Это промежуток времени от начала сравнения до момента, когда выходное напряжение компаратора достигает противоположного логического уровня. Время переключения замеряется при постоянном опорном напряжении, подаваемом на один из входов компаратора и скачке входного напряжения Uвх, подаваемого на другой вход. Это время зависит от величины превышения Uвх над опорным напряжением. На рис. 8 приведены переходные характеристики компаратора mА710 для различных значений дифференциального входного напряжения Uд при общем скачке входного напряжения в 100 мВ. Время переключения компаратора tп можно разбить на две составляющие: время задержки tз и время нарастания до порога срабатывания логической схемы tн. В справочниках обычно приводится время переключения для значения дифференциального напряжения, равного 5 мВ после скачка.

Рис. 8. Переходная характеристика компаратора m А710 при различных превышениях скачка входного напряжения Uд над опорным: 1 – на 2 мВ; 2 – на 5 мВ; 3 – на 10 мВ; 4 – на 20 мВ

Вообще говоря, сделать из операционного усилителя хороший компаратор невозможно. Чтобы получить оптимальные характеристики и не тратить дополнительное время на отладку, лучше всего использовать специализированную микросхему компаратора.

Компаратор – отличная схема, поскольку обеспечивает почти идеальный переход от аналогового сигнала к цифровому. Компаратор выглядит как устройство с двумя линейными входными сигналами, уровень цифрового выхода которого может быть либо высоким, либо низким, в зависимости от соотношения входных сигналов. Просто, но очень полезно.

Если в вашем устройстве должна быть подобная схема, лучше всего использовать микросхему компаратора, предназначенную именно для таких приложений. Однако многим разработчикам известно, что стандартный операционный усилитель (ОУ) также можно использовать в качестве компаратора. Это особенно привлекательно в тех случаях, когда в устройстве остается незадействованный ОУ, и его использование не потребует ни дополнительных затрат, ни места на печатной плате.

Однако, весьма вероятно, что получившийся из ОУ компаратор не оправдает ваших ожиданий, и его характеристики, возможно, будут далеки от оптимальных. Ошибки, обусловленные непрофессиональным подходом, могут привести к тому, что время разработки и отладки намного превысит планируемое. Лучше всего, если вам нужен компаратор, и вы хотите избежать проблем и получить наилучший возможный результат, использовать микросхему компаратора.

В чем реальные различия между операционным усилителем и компаратором?

Основные различия между ними следующие:

  • Встроенные цепи фазовой коррекции, необходимые для обеспечения устойчивости ОУ, делают устройство слишком медленным для операций переключения.
  • Входные каскады ОУ обычно защищены диодами или дополнительными транзисторами, которые нередко препятствуют использованию ОУ в схеме компаратора.
  • Выходной каскад ОУ рассчитан на использование в линейном режиме. При двуполярном питании его выходное напряжение изменяется от одной шины питания до другой, и для использования в цифровых схемах требует смещения уровней.
  • Выходной каскад истинного компаратора сконструирован для работы в режиме насыщения со стандартными логическими уровнями сигналов. Часто его выход делается по схеме с отрытым коллектором (стоком).
  • Для установки коэффициента усиления и других характеристик схемы ОУ обычно включается с резисторами обратной связи. Компаратор, как правило, работает с разомкнутой петлей, то есть, без обратной связи.
  • По сравнению с ОУ компараторы имеют меньшие времена задержки и очень высокую скорость нарастания выходного напряжения.

Несмотря на внешнее сходство, две схемы различны и предназначены для разных приложений.

Так можно ли использовать ОУ в качестве компаратора? [1] Возможно. Многие инженеры используют. Нередко так делают, когда требуется лишь один компаратор, а в корпусе счетверенного ОУ остался «свободный» усилитель. Необходимая для устойчивой работы ОУ фазовая коррекция означает, что такой компаратор будет очень медленным, но если особых требований к быстродействию не предъявляется, может быть достаточно и операционного усилителя. Иногда такой подход вполне приемлем, но в некоторых случаях он непригоден.

Работа компаратора

Один из способов разобраться с работой компаратора – изучить базовую конфигурацию ОУ, показанную на Рисунке 1а. Усилитель имеет очень большой коэффициент усиления без обратной связи (AOL >> 1000). То, что он усиливает, – это разность между двумя входами V1 и V2. Выходное напряжение равно

Из-за высокого коэффициента усиления для положительного или отрицательного насыщения выхода большого входного дифференциального сигнала (V2 – V1) не требуется. Например, при напряжении источника питания ±5 В и коэффициенте усиления без обратной связи, равном 100,000, выходное напряжение достигнет шины питания при дифференциальном входном сигнале с уровнем 5/100,000 = 50 мкВ или выше. Передаточная характеристика вход-выход изображена на Рисунке 1б.

Рисунок 1.Операционный усилитель в инвертирующем включении (а)
и его передаточная характеристика вход-выход (б).

Истинный компаратор работает от одного источника питания, как правило, того же, который используется для цифровой логики. Выход через подтягивающий резистор подключен к шине питания (Рисунок 2а). На входы компаратора поданы опорное напряжение VREF и сигнал VIN, уровень которого сравнивается с опорным уровнем. В качестве опорного и сигнального может использоваться любой из двух выходов компаратора. Обычно опорное напряжение постоянно, а входной сигнал изменяется. Компаратор может включаться в двух основных конфигурациях:

Компаратор напряжения – это устройство, выполняющее сравнение имеющегося уровня напряжения с опорным сигналом. Ответом, как правило, становится двоичная величина – да либо нет, нуль или единица.

Благодарности

Без братьев Кузнецовых не представилось бы читателям столь замечательного обзора. Нельзя оставить без внимания труд научного коллектива Нижегородского государственного университета имени Н.И. Лобачевского, его участников, меж которыми:

  • Сдобняков В.В.
  • Карзанов В.В.
  • Шабанов В.Н.
  • Рецензенты: Дорохин М.В. И Здоровейщев А.В.

Общая информация

Компаратор сравнивает два напряжения, откуда происходит название. При необходимости формируется либо условный сигнал в виде двоичного кода, либо знак разницы выдаётся иным способом:

  1. Крутой перепад напряжения (фронт или спад).
  2. Импульс с заданными характеристиками.
  3. Сменой полярности выходного напряжения.
  4. Двоичным кодом в системе логики данного набора микросхем.

Компаратор территориально входит в аналого-цифровой преобразователь, способен применяться и отдельно. От элемента напрямую зависит точность, как и от разрядности. К характеристикам компаратора относят:

  • Чувствительность.
  • Быстродействие.
  • Стоимость.
  • Долговечность.
  • Стабильность.
  • Нагрузочная способность.
  • Входное сопротивление и пр.

Большинство компараторов реализуется на базе операционных усилителей, данные в справочниках приводятся совместные. Это достигается за счёт введения обратной связи, что придумано в 30-е годы XX века.

Характеристики компараторов

Под чувствительностью компаратора понимается минимальное напряжение, годное к восприятию. Дифференциальные пары транзисторов, применяемые в операционных усилителях, повышают температурную стабильность, потому служат для создания компараторов. Параметр тесно связан с разрешающей способностью или точностью. Чувствительность сильно зависит от схемного решения, это очевидный факт.

Помимо температурной стабильности и архитектуры на параметр влияют помехоустойчивость и надёжность. На практике оптимальной считают чувствительность, равную половине разряда аналого-цифрового преобразователя. Это значит, что из-за компаратора не снижается точность замера. На современном этапе развития технологии это порой сильно отличающиеся значения.

Быстродействие цифровой технике велико, но учитывая факт, что преобразователю нужно успеть сделать выборку, тактовая частота процессора должна быть в сотни, если не тысячи раз выше, нежели дискретность отсчётов. И главным ограничивающим фактором становятся скоростные характеристики компаратора. На его втором входе в момент измерения опорное напряжение постепенно растёт до достижения совпадения. И вырабатывается цифровой код результата.

Частота дискретизации определяется скоростными качествами исследуемого процесса. Если это звуковой диапазон, значения начинаются от 45 кГц и способны составлять вчетверо больше для студийной записи. На каждом интервале времени компаратор должен успеть сравнить напряжение, минимальная частота процессора для получения точности в 0,5% лежит уже в области 10 МГц. На практике наблюдаются намного большие величины, но помните, главная шина материнской платы становится самым быстродействующим участком системного блока (персонального компьютера).

Быстродействие компаратора выражается временем между соседними измерениями. Оно складывается из интервала повышения сравниваемого напряжения до нужного уровня и скорости работы электронных компонентов. К последним цифрам относят период от принятия решения компаратором на выдачу сигнального импульса до его реального появления на выводах. Вторым параметром считают крутизну фронта импульса, поскольку логика микросхем настроена на пороги срабатывания. Важным считается время восстановления, за которое компаратор возвращается в первоначальное состояние.

Указанные параметры в сумме определяют тактовую частоту самого компаратора. Под нагрузочной способностью понимается способность выдать сигнал, достаточно мощный для срабатывания зависимых схем. Различают так называемую перегрузочную способность, показывающую, как велика иногда разница в напряжении на соседних отсчётах. Для сокращения интервалов измерения, начиная со второго, компаратор может вести два параллельных процесса измерения:

  1. Увеличение напряжения в сравнении с предыдущим отсчётом.
  2. Уменьшение напряжения в сравнении с предыдущим отсчётом.

Так удастся быстрее найти результат, не перебирая весь диапазон с начала. Хотя потребуется целых два параллельно включённых компаратора. Но экономия времени стоит указанной борьбы. На успех подобного мероприятия напрямую влияет перегрузочная способность.

Входное сопротивление образует с источником сигнала резистивный делитель, и чем оно меньше, тем выше точность, большая часть напряжения падает именно здесь. С повышением параметра снижается и потребляемый ток. У большинства компараторов входное сопротивление подстраивается под конкретно взятые нужды, для отдельных схем.

Разновидности компараторов

Большинство компараторов строится на схемах операционных усилителей, охваченных цепью положительной обратной связи. За счёт большого коэффициента усиления удаётся добиться отвесной передаточной функции каскада.

Характеристика операционного усилителя на неком участке линейна. График симметричен относительно нуля. При некотором значении Uогр происходит насыщение и выходное напряжение дальше не растёт. Это наблюдается в положительной области входных значений и в отрицательной. Описанное свойство используется для построения компараторов.

Операционный усилитель охватывается положительной связью, при коэффициенте её передачи обратно пропорциональном коэффициенту передачи операционного усилителя, формула уходит в область бесконечности. От указанного параметра зависит крутизна графика, он становится вертикальным. Что требуется на практике для сравнения напряжений.

Эталоном допускается любое значение. К примеру, возможна реализация схемы перехода напряжения через нуль. Но в составе аналого-цифрового преобразователя измеряемая величина в рамках интервала считается постоянной, опорное напряжение растёт, пока не сравняется. И в этот момент вырабатывается импульс совпадения.

Пороговый компаратор

Пороговый компаратор напряжения – упоминается в литературе. Передаточная характеристика его однозначна – когда разница на входах операционного усилителя становится равной нулю, возникает отклик на выходе. Обратное движение вдоль передаточной характеристики идёт по прежней траектории.

Он организован, как рассказано выше: операционный усилитель охвачен петлёй обратной связи для получения крутой, отвесной передаточной характеристики. Но остаётся некая малая погрешность. Эталонное напряжение принято подавать на неинвертирующий вход.

Гистерезисный компаратор

Гистерезисный компаратор получил название за то, что коэффициент передачи цепи обратной связи меняется по абсолютному значению и по знаку. В результате получают семейство передаточных характеристик, позволяющее создать компаратор, включающийся по одному значению напряжения, а выключающийся по иному.

Устройство оказывается полезным в случае наличия на линии высокочастотной помехи. И когда на заданном интервале измерения величина многократно изменяется, обычному компаратору напряжения легко промахнуться. Одновременно гистерезисный верно оценит с точностью до помехи и продержит сигнал на выходе, пока исследуемый процесс близок к эталону.

Любой реальный компаратор считается гистерезисным из-за наличия ошибки, отдельные виды специально имеют расширенную петлю в связи с описанными нюансами. Ярко выраженной прямоугольной характеристикой характеризуется триггер Шмитта. Его гистерезисная передаточная функция может служить для построения компаратора. Из-за наличия положительной обратной связи характеристика триггера Шмитта обладает ощутимой крутизной.

Уже для аналоговых схем порог чувствительности достигал 5-10 мВ, чего хватает в большинстве случаев. Поскольку время срабатывания триггера Шмитта уменьшается до 0,1 мкс, становится возможным процесс оценки сигналов частотой в сотни кГц (гораздо выше ультразвука). Представленный на рисунке триггер характеризуется большим температурным дрейфом и малым диапазоном измерения.

Ввиду простоты популярны балансные регенеративные схемы с диодами. Обратная связь здесь выполнена через трансформатор. За счёт использования средней рабочей точки становится возможным одновременно произвести и положительную, и отрицательную обратную связь. Сравниваемые напряжения подаются на катоды диодов (n-область, в районе которой нарисована перпендикулярная черта). Рабочая точка транзистора выбрана в начале вольт-амперной характеристики, ток базы рассчитывается так, чтобы не произошло насыщения.

Конденсатор выполняет гальваническую развязку базы и входной цепи. Если диод Д1 заперт, а Д2 — открыт, работает отрицательная обратная связь. В результате генерации не происходит. В обратном случае блокинг-генератор производит первый импульс. Его положительный фронт свидетельствует, что эталон сравнялся с оцениваемой величиной. Чувствительность балансной регенеративной схемы может достигать 1 мВ.

Компараторы на туннельных диодах хороши малыми габаритами, отличным быстродействием, низким уровнем шумов, низкими переключающими порогами по мощности. Механическая прочность и стойкость полупроводников общеизвестны. Туннельные диоды считаются редкими приборами, не боящимися радиации, что делает их популярными в специальных применениях. Вдобавок сопротивление таких компараторов крайне мало, что снижает чувствительность.

Характеристика туннельного диода содержит участок с отрицательным дифференциальным сопротивлением, что позволяет реализовать нужную передаточную функцию. Очевидным недостатком схемы становится низкая точность. Вольт-амперная характеристика туннельного диода слишком пологая. Зато по простоте этот компаратор нельзя сравнить с любым другим типом устройств. Его пока нельзя назвать гистерезисным, для получения этого типа характеристики требуется, как минимум, два туннельных диода.

Самый простой компаратор

При помощи двух туннельных диодов нетрудно построить простейший компаратор, включая их по схеме твин. Предполагается, что элементы идентичны. Передаточная характеристика системы сильно зависит от напряжения питания схемы. Характеристики легко изменяются, что обусловливает большую гибкость применения. Чувствительность измеряются по току, и экспериментально полученные значения лежат в области 8 мкА при частоте тактирования 200 МГц, 3 мкА – при 50 МГц.

Деление по принципу действия

Помимо чисто функциональных особенностей, рассмотренных выше, компараторы делятся по принципу действия на:

  1. Регенеративные.
  2. Генераторные.
  3. Амплитудно-импульсные.
  4. Модуляторные.

Речь здесь идёт о формируемых устройствами выходных сигналах. В работе компаратора напряжения выделяют два процесса: сравнение величин и формирование выходного сигнала. Статическая ошибка обусловлена лишь двумя причинами:

  1. Шумами.
  2. Температурным дрейфом и старением.

операционных усилителей, схема компаратора | Renesas

Введение в электронные схемы: 3 из 3

На этом занятии мы рассмотрим операционные усилители (операционные усилители) и их использование в усилителях и компараторах.

Операционные усилители: универсальные ИС для множества приложений

Операционный усилитель работает на аналоговом входе. Его можно использовать для усиления или ослабления этого входного сигнала, а также для выполнения математических операций, таких как сложение, вычитание, интегрирование и дифференцирование.Из-за широкого диапазона применения операционные усилители встречаются в большинстве электрических цепей.

Типичный операционный усилитель, показанный на рисунке 1, оснащен неинвертирующим входом (Vin (+)), инвертирующим входом (Vin (-)) и выходом (Vout). Хотя это не показано на схеме, операционный усилитель также имеет два входа питания (положительный и отрицательный), а также может включать в себя вход смещения и другие клеммы.

Рисунок 1: Схема операционного усилителя

Основная функция операционного усилителя заключается в значительном усилении разницы между двумя входами и выходе результата.Если вход на V (+) больше, чем на V (-), операционный усилитель будет усиливать и выводить положительный сигнал; если V (-) больше, операционный усилитель выдает усиленный отрицательный сигнал. Две другие особенности типичного операционного усилителя: (а) входное сопротивление чрезвычайно велико и (б) выходное сопротивление чрезвычайно низкое.

Поскольку коэффициент усиления операционного усилителя настолько велик, даже небольшие различия на входах быстро приведут выходное напряжение к максимальному или минимальному значению. По этой причине операционные усилители обычно подключаются к отрицательной обратной связи.Давайте посмотрим на пример.

Основы операционного усилителя

(1): схема инвертирующего усилителя

Схема, показанная на рис. 2, усиливает и инвертирует (меняет фазу) входной сигнал и выводит результат. В схеме используется отрицательная обратная связь: часть выходного сигнала инвертируется и возвращается на вход. В этом примере обратная связь возникает из-за того, что выход Vout подключен через резистор R2 к инвертирующему входу (-).

Давайте посмотрим, как работает эта схема.Если выход не подключен к напряжению питания, тогда напряжения, подаваемые на инвертирующий (-) и неинвертирующий (+) входы, равны; два входа действуют так, как будто закорочены вместе; мы можем представить себе воображаемую короткую. Поскольку разница напряжений между этим воображаемым коротким замыканием и неинвертирующим входом составляет 0 В, точка A также будет иметь значение 0 В. Тогда по закону Ома I 1 = Vin / R 1 .

Рисунок 2: Схема инвертирующего усилителя

Поскольку операционные усилители имеют чрезвычайно высокий входной импеданс, ток на инвертирующий вход практически отсутствует (-).Соответственно, I 1 протекает через точку A и R 2 ; это означает, что I 1 и I 2 практически равны. Тогда по закону Ома Vout = −I 1 × R 2 , где I 1 отрицательно, потому что I 2 течет из точки A, где напряжение равно 0. Рассмотрим это с другой стороны. : любая попытка поднять входное напряжение на инвертирующем входе (-) создает инвертированное и сильно усиленное выходное напряжение, которое течет в обратном направлении, проходит через R 2 и подключается к инвертированной входной клемме (-), тем самым подавляя рост напряжения на этом Терминал.Система стабилизируется при выходном напряжении, которое доводит напряжение на инвертирующем входе (-) до 0 В, что эквивалентно напряжению на неинвертирующем входе.

Далее, давайте посмотрим, как мы можем использовать взаимосвязь между входом и выходом, чтобы найти коэффициент усиления операционного усилителя. В частности, Vout / Vin = (−I 1 × R 2 ) / (I 1 × R 1 ) = −R 2 / R 1 . Коэффициент усиления отрицательный, потому что фаза выходного сигнала противоположна фазе входного сигнала.

Важно отметить, что в приведенном выше уравнении коэффициент усиления полностью определяется соотношением сопротивлений R 2 и R 1 . Соответственно, вы можете изменить усиление, просто изменив сопротивления. Таким образом, хотя сам операционный усилитель имеет высокое усиление, соответствующее использование отрицательной обратной связи может снизить фактическое усиление до желаемого уровня.

Основы операционного усилителя

(2): Схема неинвертирующего усилителя

В предыдущем разделе мы видели, как операционный усилитель можно использовать для реализации инвертирующего усилителя.На рисунке 3 показано, как мы можем использовать его для создания неинвертирующего усилителя. Неинвертирующий усилитель отличается от инвертирующего по двум основным направлениям: (1) форма выходного сигнала находится в фазе с формой входного сигнала, и (2) входной сигнал поступает на неинвертирующий входной терминал (+). Но обратите внимание, что как неинвертирующие, так и инвертирующие схемы используют отрицательную обратную связь.

Так как же работает эта схема? У нас все еще есть воображаемое короткое замыкание, что означает, что неинвертирующий (+) и инвертирующий (-) входы находятся под напряжением Vin.Таким образом, точка A также находится в Vin. Закон Ома говорит нам, что напряжение на R 1 составляет Vin = R 1 × I 1 . А поскольку на любой из входов операционного усилителя по существу нет тока, отсюда следует, что I 1 = I 2 . А поскольку Vout — это сумма напряжений при 1 и 2 R, мы знаем, что Vout = 2 × I 2 + R 1 × I 1 . Мы можем изменить эти выражения, чтобы найти коэффициент усиления G следующим образом: G = Vout / Vin = (1 + R 2 / R 1 )

Рисунок 3: Схема неинвертирующего усилителя

Поскольку этот усилитель сохраняет фазу, его часто можно найти в приложениях, где важно учитывать фазу.

Также обратите внимание, что если R 1 удаляется из схемы, а резистор R 2 установлен на 0 Ом (или закорочен), схема становится повторителем напряжения с коэффициентом усиления 1. Этот тип схемы часто используется для буферизации. схемотехника и схемы преобразования импеданса.

Схема компаратора

Схема компаратора сравнивает два напряжения и выдает либо 1 (напряжение на плюсовой стороне; VDD на иллюстрации), либо 0 (напряжение на отрицательной стороне), чтобы указать, какое из них больше.Компараторы часто используются, например, для проверки того, достиг ли вход некоторого заранее определенного значения. В большинстве случаев компаратор реализуется с использованием специальной микросхемы компаратора, но в качестве альтернативы можно использовать операционные усилители. На схемах компараторов и схемах операционных усилителей используются одни и те же символы.

На рисунке 4 показана схема компаратора. Прежде всего обратите внимание, что схема не использует обратную связь. Схема усиливает разницу напряжений между Vin и VREF и выводит результат на Vout. Если Vin больше, чем VREF, то напряжение на Vout повысится до положительного уровня насыщения; то есть к напряжению на положительной стороне.Если Vin ниже VREF, то Vout упадет до своего отрицательного уровня насыщения, равного напряжению на отрицательной стороне.

На практике эту схему можно улучшить, включив диапазон напряжения гистерезиса, чтобы снизить ее чувствительность к шуму. Например, схема, показанная на рис. 5, будет обеспечивать стабильную работу, даже когда сигнал Vin несколько зашумлен.

Рисунок 4: Схема компаратора

Рисунок 5: Схема компаратора с гистерезисом

Цепь осциллятора с использованием положительной обратной связи

Обратная связь — это возврат части выхода схемы обратно на вход схемы с целью некоторого регулирования схемы.При отрицательной обратной связи более высокая обратная связь снижает выходной сигнал схемы. При положительной обратной связи, как в примере здесь, более высокий выход увеличивает выход. Когда положительная обратная связь включена в схему с положительным усилением, схема становится генератором.

Существует множество типов схем генератора. На рисунке 6 показан пример нестабильного мультивибраторного генератора.

Рисунок 6: Схема нестабильного мультивибратора

Эта цепь называется нестабильной, потому что она нестабильна при обоих максимальных напряжениях, напряжении V L на положительной стороне и -V L на отрицательной стороне, и будет колебаться между этими двумя уровнями.Давайте посмотрим, как работает эта схема. Во-первых, обратите внимание, что выход Vout проходит через R 2 и обратно на неинвертирующий вывод операционного усилителя (+), образуя цепь положительной обратной связи. Отметим также, что Vout, R 3 и C содержат схему интегратора RC; или, другими словами, некоторая часть напряжения на Vout будет постепенно заряжать конденсатор.

Вначале цепь обратной связи быстро приводит Vout к максимальному положительному выходу (равному V L ).Но схема интегратора R3 (R 3 и C) постепенно увеличивает напряжение на инвертирующей входной клемме (-), пока через определенное время это напряжение не станет выше, чем напряжение на неинвертирующей входной клемме (+). Когда это происходит, отрицательное напряжение поступает на дифференциальный вход, быстро понижая Vout до максимума на отрицательной стороне (-V L ).

Теперь, когда Vout находится на отрицательной стороне, схема интегратора R 3 начинает постепенно повышать отрицательное напряжение на инвертирующей клемме (-).И снова, по прошествии определенного времени, это отрицательное напряжение становится больше, чем напряжение на неинвертирующем выводе (+), вызывая ввод положительного напряжения на дифференциальный вход, который быстро подталкивает Vout обратно к его положительному максимуму ( V L ). Эта последовательность продолжает повторяться, заставляя Vout колебаться вверх и вниз между V L и — V L .

Это третья и последняя сессия нашего обзора основных электронных схем. Мы надеемся, что этот обзор был полезен, даже несмотря на то, что мы признаем, что объем был весьма ограничен.В следующий раз мы начнем изучение цифровых схем. Надеемся на ваше дальнейшее участие.

Список модулей

  1. Пассивные элементы
  2. Диоды, транзисторы и полевые транзисторы
  3. Операционные усилители, схема компаратора

Компаратор напряжения | Аналоговые интегральные схемы

Детали и материалы

  • Операционный усилитель, рекомендуется модель 1458 или 353 (каталог Radio Shack № 276-038 и 900-6298, соответственно)
  • Три батареи по 6 В
  • Два потенциометра 10 кОм, линейный конус (каталог Radio Shack № 271-1715)
  • Один светодиод (каталожный номер Radio Shack 276-026 или аналог)
  • Один резистор 330 Ом
  • Один резистор 470 Ом

Для этого эксперимента требуется только один операционный усилитель.И модели 1458, и 353 представляют собой «сдвоенные» операционные усилители с двумя полными схемами усилителя, размещенными в одном 8-контактном DIP-корпусе.

Я рекомендую вам покупать и использовать «двойные» операционные усилители вместо «одиночных», даже если для проекта требуется только один операционный усилитель, потому что они более универсальны (один и тот же операционный усилитель может работать в проектах, требующих только одного усилителя в качестве а также в проектах, требующих двух). Это имеет смысл в интересах покупки и хранения наименьшего количества компонентов для вашей домашней лаборатории.

Перекрестные ссылки

Уроки электрических цепей, том 3, глава 8: «Операционные усилители»

Наклоняющиеся цели

  • Чтобы проиллюстрировать, как использовать операционный усилитель в качестве компаратора

Принципиальная схема

Иллюстрация

Инструкции для цепи компаратора

Схема компаратора сравнивает два сигнала напряжения и определяет, какой из них больше.Результат этого сравнения указывается выходным напряжением: если выход операционного усилителя насыщен в положительном направлении, неинвертирующий вход (+) имеет большее или более положительное напряжение, чем инвертирующий вход (-), все напряжения измеряется относительно земли. Если напряжение операционного усилителя близко к отрицательному напряжению питания (в данном случае 0 вольт или потенциал земли), это означает, что на инвертирующий вход (-) приложено большее напряжение, чем на неинвертирующий вход (+).

Это поведение гораздо легче понять, поэкспериментировав со схемой компаратора, чем прочитав чье-то словесное описание.В этом эксперименте два потенциометра подают переменные напряжения, которые операционный усилитель сравнивает. Состояние выхода операционного усилителя визуально отображается светодиодом. Регулируя два потенциометра и наблюдая за светодиодом, можно легко понять функцию схемы компаратора.

Для лучшего понимания работы этой схемы вы можете подключить пару вольтметров к входным клеммам операционного усилителя (оба вольтметра связаны с землей), чтобы оба входных напряжения можно было численно сравнить друг с другом, эти показания измерителя по сравнению с Состояние светодиода:

Цепи компаратора

широко используются для сравнения физических измерений при условии, что эти физические переменные могут быть преобразованы в сигналы напряжения.Например, если небольшой генератор был прикреплен к колесу анемометра для создания напряжения, пропорционального скорости ветра, этот сигнал скорости ветра можно было бы сравнить с «заданным» напряжением и сравнить с помощью операционного усилителя для управления высокой скоростью ветра. сигнализация:

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Схемы компаратора

— обзор

Что такое операционный усилитель на самом деле?

Вы понимаете, как работает операционный усилитель? Вы бы поверили, что операционные усилители были разработаны, чтобы упростить создание схемы? Вы, наверное, не думали, что в прошлый раз ломали голову над плохо работающим макетом в лаборатории.

В современном цифровом мире, похоже, обычной практикой является обсуждение темы операционных усилителей, давая учащимся возможность ознакомиться с часто используемыми формулами, не объясняя при этом их цель или теорию. Затем, когда новый инженер впервые разрабатывает схему операционного усилителя, возникает полная путаница, когда схема работает не так, как ожидалось. Это обсуждение призвано дать некоторое представление о внутренностях операционного усилителя и дать читателю интуитивное понимание операционных усилителей.

И последнее: обязательно сначала прочтите этот раздел! Я считаю, что одна из причин op-fusion (путаницы с операционными усилителями), как я люблю это называть, заключается в том, что теория преподается не по порядку. Изучение теории имеет очень конкретный порядок, поэтому, пожалуйста, разберитесь в каждом разделе, прежде чем двигаться дальше. Во-первых, давайте взглянем на символ операционного усилителя (см. Рисунок 3.8 на следующей странице).

Рисунок 3.8. Ваш базовый операционный усилитель.

Имеется два входа, положительный и отрицательный, обозначенные знаками + и -.Есть один выход.

Входы имеют высокий импеданс. Я повторяю. Входы имеют высокий импеданс. Позвольте мне сказать это еще раз. Входы имеют высокий импеданс! Это означает, что они (практически) не влияют на цепь, к которой они подключены. Запишите это, потому что это очень важно. Подробнее об этом мы поговорим позже. Об этом важном факте обычно забывают, и он способствует путанице, о которой я упоминал ранее.

Выход с низким сопротивлением. Для большинства анализов лучше всего рассматривать его как источник напряжения.Теперь давайте представим операционный усилитель, как на рис. 3.9, двумя отдельными символами.

Рисунок 3.9. Что на самом деле внутри операционного усилителя?

Здесь вы видите суммирующий блок и блок усиления. Вы можете вспомнить похожие символы из своего урока теории управления. На самом деле они не просто похожи — они абсолютно одинаковы. Теория управления работает для операционных усилителей. (Больше по этой теме будет позже.)

Во-первых, давайте обсудим суммирующий блок. Вы заметите, что на суммирующем блоке есть положительный вход и отрицательный вход, как и на операционном усилителе.Помните, что отрицательный вход — это как если бы напряжение в этой точке умножалось на -1. Таким образом, если у вас есть 1 В на положительном входе и 2 В на отрицательном входе, выход этого блока будет -1. Выход этого блока — это сумма двух входов, где один из входов умножается на -1. Его также можно представить как разность двух входов и представить это уравнение:

Eq. 3.1Vs = (V +) — (V-)

Теперь мы подошли к блоку усиления. Переменная G внутри этого блока представляет величину усиления, которую операционный усилитель применяет к сумме входных напряжений.Это также известно как усиление разомкнутого контура операционного усилителя. В этом случае мы будем использовать значение 50 000. Я слышал, вы говорите: «Как такое может быть? Схема усиления, которую я только что построил с операционным усилителем, не достигает таких высот! » Просто поверь мне на мгновение. Вскоре мы перейдем к приложениям для усиления. Просто найдите коэффициент усиления в разомкнутом контуре в таблице данных производителя. Вы увидите, что этот уровень усиления или даже выше типичен для большинства операционных усилителей.

А теперь проведем небольшой анализ. Что произойдет на выходе, если подать 2 В на положительный вход и 3 В на отрицательный? Я рекомендую вам попробовать это на макетной плате.Я хочу, чтобы вы увидели, что операционный усилитель может и будет работать с разными напряжениями на входах. Однако немного математики и немного здравого смысла также покажут нам, что произойдет. Например:

Ур. 3.2Vout = 50,000 * (2-3) или -50,000V

Теперь, если у вас нет операционного усилителя 50,000 В, подключенного к биполярному источнику питания 50,000 В, вы не увидите -50,000 В на выходе. Что ты увидишь? Подумайте об этом за минуту, прежде чем читать дальше. Выход пойдет на минимальную рейку. Другими словами, он будет стараться быть как можно более негативным.Это имеет большой смысл, если вы подумаете об этом так. Выход хочет достичь -50 000 В и подчиняться предыдущей математике. Он не может попасть туда, поэтому он подойдет как можно ближе. Рельсы операционного усилителя подобны рельсам железнодорожного полотна; поезд будет оставаться в пределах своих рельсов, если это вообще возможно. Точно так же, если операционный усилитель выйдет за пределы рельсов, произойдет катастрофа, и из микросхемы выйдет пресловутый волшебный дым. Шина — это максимальное и минимальное напряжение, которое может выдавать операционный усилитель. Как вы понимаете, это зависит от источника питания и выходных характеристик операционного усилителя.Хорошо, поменяйте местами входы. Теперь верно следующее:

Ур. 3.3Vout = 50,000 * (3-2) или + 50,000V

Что теперь будет? Выход пойдет на максимальную рейку. Как узнать, где находятся выходные шины операционного усилителя? Как отмечалось ранее, это зависит от используемого источника питания и конкретного операционного усилителя. Для получения этой информации вам нужно будет свериться с таблицей данных производителя. Предположим, что мы используем LM324 с односторонним питанием +5 В. В этом случае выход будет очень близок к 0 В при попытке перейти в отрицательное значение и около 4 В при попытке перейти в положительное значение.

На этот раз я хотел бы отметить кое-что. Входы операционного усилителя не равны друг другу. Много раз я видел, как инженеры ожидали, что эти входные данные будут иметь одинаковую ценность. На этапе анализа разработчик придумывает токи, поступающие на входы устройства, чтобы это произошло (помните, входы с высоким импедансом, практически нулевой ток). Затем, когда он пробует это, его сбивает с толку тот факт, что он может измерять разные напряжения на входах.

В особом случае, который мы обсудим в следующем разделе, вы можете сделать предположение, что эти входы равны.Это не общий случай! Это распространенное заблуждение. Вы не должны попадаться в эту ловушку, иначе вы вообще не поймете операционные усилители.

Предыдущие примеры показывают очень изящное применение операционных усилителей: схему компаратора. Это отличная маленькая схема для преобразования аналогового мира в цифровой. Используя эту схему, вы можете определить, выше или ниже один входной сигнал, чем другой. Фактически, многие микроконтроллеры используют схему компаратора в процессах аналого-цифрового преобразования.Цепи компаратора используются повсюду. Как вы думаете, как уличный фонарь знает, когда достаточно темно, чтобы включиться? Он использует схему компаратора, подключенную к датчику освещенности. Как светофор узнает, что над датчиками есть автомобиль, чтобы переключиться на зеленый? Вы можете поспорить, что там есть схема компаратора.

Thumb Rules

Входы имеют высокий импеданс; они оказывают незначительное влияние на цепь, к которой они подключены.

Входы могут иметь различное напряжение; им не обязательно быть равными.

Коэффициент усиления разомкнутого контура операционного усилителя очень высок.

Из-за высокого усиления разомкнутого контура и ограничений по выходу операционного усилителя, если один вход выше, чем другой, выход будет «направляться» к своему максимальному или минимальному значению. (Это приложение часто называют схемой компаратора.)

Принцип работы схемы компаратора OP-Amp и ее применение

Обычно в электронике компаратор используется для сравнения двух напряжений или токов, подаваемых на два входа компаратор.Это означает, что он берет два входных напряжения, затем сравнивает их и выдает дифференциальное выходное напряжение высокого или низкого уровня. Компаратор используется для определения момента, когда произвольно изменяющийся входной сигнал достигает опорного уровня или определенного порогового уровня. Компаратор может быть разработан с использованием различных компонентов, таких как диоды, транзисторы, операционные усилители. Компараторы можно найти во многих электронных приложениях, которые могут использоваться для управления логическими схемами.

Символ компаратора

Операционный усилитель как компаратор

Когда мы внимательно посмотрим на символ компаратора, мы узнаем его как символ операционного усилителя (операционного усилителя), так что же отличает этот компаратор от операционного усилителя; Операционный усилитель предназначен для приема аналоговых сигналов и вывода аналогового сигнала, тогда как компаратор выдает только выходной сигнал в виде цифрового сигнала; хотя в качестве компараторов можно использовать обычный операционный усилитель (операционные усилители, такие как LM324, LM358 и LM741, не могут использоваться непосредственно в схемах компаратора напряжения.

Операционные усилители

часто могут использоваться в качестве компараторов напряжения, если к выходу усилителя добавлен диод или транзистор), но реальный компаратор разработан так, чтобы иметь более быстрое время переключения по сравнению с многоцелевыми операционными усилителями. Таким образом, можно сказать, что компаратор — это модифицированная версия операционных усилителей, специально разработанная для работы с цифровым выходом.

Сравнение выходной схемы операционного усилителя и компаратора

Работа базовой схемы компаратора

Схема компаратора работает, просто принимая два аналоговых входных сигнала, сравнивая их и затем вырабатывая логический выход с высоким «1» или низким «0».

Схема неинвертирующего компаратора

Подавая аналоговый сигнал на вход + компаратора, называемый «неинвертирующим», и — вход, называемый «инвертирующим», схема компаратора сравнивает эти два аналоговых сигнала, если аналоговый вход на неинвертирующем входе больше чем аналоговый вход при инвертировании, то выход будет качаться до высокого логического уровня, и это заставит транзистор с открытым коллектором Q8 на эквивалентной схеме LM339 выше включиться. Когда аналоговый вход на неинвертирующем входе меньше аналогового входа на инвертирующем входе, тогда на выходе компаратора будет низкий логический уровень.

При этом транзистор Q8 выключится. Как мы видели на изображении эквивалентной схемы LM339 выше, LM339 использует на выходе транзистор с открытым коллектором Q8, поэтому мы должны использовать «подтягивающий» резистор, который подключен к выводу коллектора Q8 с помощью Vcc, чтобы заставить этот транзистор Q8 работать. Согласно таблице данных LM339, максимальный ток, который может протекать через этот транзистор Q8 (выходной ток стока), составляет около 18 мА. V- можно рассчитать следующим образом.

V- = R2.Vcc / (R1 + R2)

Неинвертирующий вход компаратора подключен к потенциометру 10 кОм, который также формирует схему делителя напряжения, где мы можем регулировать начало напряжения V + с Vcc до 0 вольт. Во-первых, когда V + равно Vcc, выход компаратора перейдет в высокий логический уровень (Vout = Vcc), потому что V + больше, чем V-.

Это выключит транзистор Q8 и погаснет светодиод. Когда напряжение V + падает ниже V- вольт, выход компаратора переходит в низкий логический уровень (Vout = GND), что включает транзистор Q8 и загорается светодиод.

Путем замены аналогового входа; делитель напряжения R1 и R2, подключенный к неинвертирующему входу (V +), и потенциометр, подключенный к инвертирующему входу (V-), мы получим противоположный выходной результат.

Схема инвертирующего компаратора

Опять же, используя принцип делителя напряжения, напряжение на неинвертирующем входе (V +) составляет примерно V- вольт, поэтому, если мы начинаем инвертирующее входное напряжение (V-) с Vcc вольт, V + ниже, чем V-, это включит транзистор Q8, и выход компаратора перейдет в низкий логический уровень.Когда мы регулируем V- ниже V +. После выключения транзистора Q8 выход компаратора перейдет в высокий логический уровень, потому что теперь V + больше, чем V-, и светодиод погаснет.

Применение компаратора в схемах практической электроники

Система мониторинга влажности почвы на основе беспроводных сенсорных сетей с использованием Arduino

Система мониторинга влажности почвы на основе беспроводных сенсорных сетей с использованием проекта Arduino предназначена для разработки системы автоматического полива, которая может управлять переключением (включение / выключение) электродвигателя насоса в зависимости от влажности почвы.

Система контроля влажности

Датчик влажности определяет влажность почвы, и соответствующий сигнал подается на плату Arduino. Компаратор сравнивает сигналы уровня влажности с заранее заданным опорным сигналом. Затем он отправит сигнал на микроконтроллер. На основе сигнала, полученного от датчика, и сигнала компаратора, будет работать водяной насос. ЖК-дисплей используется для отображения состояния влажности почвы и водяного насоса.

Цепь датчика сердечного ритма

Реализация в системе микросхемы монитора сердечного ритма

Датчик сердечного ритма HRM-2511E имеет 4 операционных усилителя.Четвертый операционный усилитель используется как компаратор напряжения. Аналоговый сигнал PPG подается на положительный вход, а отрицательный вход привязан к опорному напряжению (VR). Величину VR можно установить в пределах от 0 до Vcc с помощью потенциометра P2 (показано выше). Каждый раз, когда импульсная волна PPG превышает пороговое напряжение VR, выходной сигнал компаратора становится высоким. Таким образом, это устройство обеспечивает выходной цифровой импульс, который синхронизируется с тактом. Ширина импульса также определяется пороговым напряжением VR.

Цепь дымовой сигнализации

Цепь дымовой сигнализации

Фотодиоды излучают свет, который определяется фототранзисторами Q1 и Q2. Верхняя область герметична, поэтому рабочая точка транзистора Q1 не меняется. Эта рабочая точка используется в качестве эталона для компаратора. Когда дым попадает в нижнюю область, рабочая точка фототранзистора Q2 изменяется, что приводит к изменению напряжения Vin от базового (без дыма) значения Vin (no_smoke). -Транзистор уменьшается из-за попадания дыма в область, ток базы уменьшается, а напряжение Vin увеличивается от базового (без дыма) значения Vin (no_smoke).Когда напряжение Vin пересекает Vref, выход компаратора переключается с VL на VH, вызывая аварийный сигнал.

Я надеюсь, что, прочитав эту статью, вы получили некоторые основы работы с компаратором. Если у вас есть какие-либо вопросы об этой статье или о проектах в области электроники и электротехники последнего года, пожалуйста, не стесняйтесь оставлять комментарии в разделе ниже. Вот вам вопрос: знаете ли вы какие-либо приложения для встроенных систем, в которых операционный усилитель используется в качестве схемы компаратора?

Операционный усилитель

в качестве компаратора [Analog Devices Wiki]

Цель:

В этой лабораторной работе мы представляем операционный усилитель (ОУ) в конфигурации режима переключения, получая характеристики компаратора напряжения ОУ.Схема компаратора напряжения предназначена для выделения через два различных состояния выходного напряжения относительного состояния двух входных напряжений. Сравнение выполняется с использованием знака разницы между двумя входными напряжениями, а отклик — это одно из двух возможных выходных значений, зависящее от знака этой конкретной разницы.

Фон:

Операционный усилитель как «компаратор»:

Рассмотрим операционный усилитель, используемый для усиления сигнала без обратной связи, как показано на рисунке 1a.Поскольку обратная связь не используется, входной сигнал усиливается полным усилением операционного усилителя без обратной связи. Даже очень маленького входного напряжения (менее милливольта с каждой стороны от Vth) будет достаточно, чтобы довести выход до минимального или максимального выходного напряжения, как показано на графиках Vin и Vout. Таким образом, в этом случае, поскольку вход операционного усилителя подключен к Vth, выход представляет знак Vin («0», если Vin Vth) 1, и схема похожа на -разрядный аналого-цифровой преобразователь (АЦП) и работает как компаратор напряжения.

Рисунок 1a, операционный усилитель, используемый в качестве компаратора.

На первый взгляд операционные усилители и компараторы могут показаться взаимозаменяемыми, исходя из их обозначений и выводов. Комплекты аналоговых деталей поставляются с различными операционными усилителями и высокоскоростным компаратором напряжения AD8561, который использовался в других целях. У некоторых разработчиков может возникнуть соблазн использовать или заменить доступные операционные усилители в качестве компараторов напряжения в своих проектах. Однако есть очень важные отличия.Компараторы предназначены для работы без отрицательной обратной связи или разомкнутого контура, они обычно предназначены для управления цифровыми логическими схемами со своих выходов и предназначены для работы на высокой скорости с минимальной нестабильностью. Операционные усилители обычно не предназначены для использования в качестве компараторов, их входные структуры могут насыщаться при перегрузке, что может привести к сравнительно медленной реакции. Многие из них имеют входные каскады, которые ведут себя неожиданным образом при работе с большими дифференциальными напряжениями или за пределами указанного синфазного диапазона.Фактически, во многих случаях диапазон дифференциального входного напряжения операционного усилителя ограничен или ограничен, чтобы предотвратить повреждение устройств входного каскада.

Предупреждение: использование операционных усилителей со встроенными входными зажимами в качестве компаратора напряжения может привести к повреждению ИС!

Тем не менее, многие дизайнеры все еще пытаются использовать операционные усилители в качестве компараторов. Хотя в некоторых случаях это может работать на низких скоростях и низких разрешениях, во многих случаях результаты неудовлетворительны. Не все проблемы, связанные с использованием операционного усилителя в качестве компаратора, можно решить с помощью ссылки на техническое описание операционного усилителя, поскольку операционные усилители не предназначены для использования в качестве компараторов.

Наиболее частыми проблемами являются скорость (как мы уже упоминали), влияние входных структур (защитные диоды, инверсия фазы в усилителях на полевых транзисторах, таких как ADTL082 и многие другие), выходные структуры, которые не предназначены для управления логикой, гистерезис и т. Д. стабильность и синфазные эффекты.

Для компаратора операционного усилителя мы можем рассматривать один вход v D как разницу между v + и v . Следовательно, выходное напряжение В, , , , может принимать одно из двух возможных значений:

  • V O = V OH (High), что означает, что v + > v (v D > 0)
  • V O = V OL (Низкий), что означает, что v + (v D

Мы рассматриваем пороговое напряжение V Th как конкретное значение / значения входного напряжения v I , при котором происходит переключение на выходе.(установка v D = 0).

Следует рассмотреть два основных типа компараторов напряжения:

Материалы:

Модуль активного обучения ADALM2000
Макетная плата без пайки и комплект перемычек
3 резистор 10 кОм
1 резистор 20 кОм
1 OP97 (усилитель с низкой скоростью нарастания напряжения, поставляемый с последними версиями комплекта аналоговых деталей ADALP2000)

Простой компаратор

Фон:

Высокое собственное усиление операционного усилителя и эффекты насыщения выходного сигнала можно использовать, настроив операционный усилитель в качестве компаратора, как показано на рисунке 1.По сути, это схема принятия решения с двоичным состоянием: если напряжение на клемме «+» больше, чем напряжение на клемме «-», Vin> Vref, выход становится «высоким» (насыщается до максимального значения). . И наоборот, если Vin

Рис.1 Операционный усилитель в качестве компаратора

Настройка оборудования:

Компараторы используются по-разному, и в следующих разделах мы увидим их в действии в нескольких лабораторных работах. Здесь мы будем использовать компаратор в общей конфигурации, которая генерирует прямоугольный сигнал с переменной шириной импульса:

Начните с отключения источников питания и соберите схему. Как и в предыдущей схеме суммирующего усилителя, используйте выход второго генератора сигналов для источника постоянного тока Vref, установите амплитуду на ноль и смещение выхода до упора, чтобы вы могли отрегулировать его от нуля во время эксперимента.

Снова настройте генератор сигналов Vin для синусоидальной волны с амплитудой 2 В на частоте 1 кГц . При включенном источнике питания и нулевом напряжении Vref экспортируйте форму выходного сигнала.

Теперь медленно увеличивайте Vref и наблюдайте, что происходит. Запишите форму выходного сигнала для Vref = 1 В. Продолжайте увеличивать Vref, пока оно не превысит 2 В, и посмотрите, что произойдет. Вы можете это объяснить?

Повторите вышеуказанное для треугольной формы входного сигнала и запишите свои наблюдения для лабораторного отчета.

Рис. 2. Схема макетной платы компаратора.

Процедура:

Используйте первый генератор сигналов в качестве источника Vin для обеспечения возбуждения синусоидальной волны с амплитудой 2 В от пика до пика 1 кГц в схему. Подайте на операционный усилитель +/- 5 В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

Пример графика представлен на рисунке 3.

Рисунок 3.Формы сигналов компаратора

Компаратор гистерезиса

Гистерезис — это зависимость текущего состояния системы от предыдущих значений определяющих его величин. Выходное значение не является строгой функцией соответствующего входа, но также включает некоторую задержку, задержку или зависимость от истории. В частности, реакция на уменьшение входной переменной отличается от реакции на увеличение входной переменной.

В этой конфигурации есть два пороговых значения V ThH и V ThL с двумя выходными значениями V OH и V OL .Пороговые значения должны зависеть от выходного значения, которое возвращается на вход и вносит вклад в пороговые значения (положительная обратная связь). Через резистивный делитель часть выходного напряжения возвращается на неинвертирующий вход.

При анализе гистерезисных компараторов мы должны учитывать направление движения гистерезиса и тот факт, что в определенный момент активен только один порог.

Входной сигнал запускает переключение выхода, процесс переключения поддерживается положительной обратной связью.

Неинвертирующий гистерезисный компаратор

Фон:

Рассмотрим схему, представленную на рисунке 4.

Рисунок 4 Неинвертирующий гистерезисный компаратор

Для схемы неинвертирующего гистерезисного компаратора на рисунке 4 Vin подается на неинвертирующий вход операционного усилителя. Резисторы R1 и R2 образуют цепь делителя напряжения на компараторе, обеспечивая положительную обратную связь, при этом часть выходного напряжения появляется на неинвертирующем входе вместе с Vin через тот же резистивный делитель.

Величина обратной связи определяется коэффициентом сопротивления двух используемых резисторов (в данной конкретной ситуации соотношение будет равным).

Мы можем вычислить пороговые напряжения следующим образом:

Учитывая v D = 0, v в V Th , получаем следующие пороги:

Настройка оборудования:

Постройте следующую макетную схему для неинвертирующего гистерезисного компаратора.

Рисунок 5. Макетная схема неинвертирующего гистерезисного компаратора.

Процедура:

Используйте первый генератор сигналов в качестве источника Vin для обеспечения возбуждения синусоидальной волны с амплитудой 6 В от пика до пика 1 кГц в схему. Подайте на операционный усилитель +/- 5 В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

Пример графика представлен на рисунке 6.

Рис. 6. Форма сигнала неинвертирующего гистерезисного компаратора

Рис. 7. График XY неинвертирующего гистерезисного компаратора.

На Рисунке 7. вы можете наблюдать характеристики передачи напряжения неинвертирующего гистерезисного компаратора (нарисованные стрелки указывают поток сигнала относительно пороговых значений).

Инвертирующий компаратор гистерезиса

Фон:

Рассмотрим схему, представленную на рисунке 8.

Рисунок 8. Инвертирующий гистерезисный компаратор.

Для схемы инвертирующего гистерезисного компаратора на рисунке 8 Vin подается на инвертирующий вход операционного усилителя. Резисторы R1 и R2 образуют цепь делителя напряжения на компараторе, обеспечивая положительную обратную связь, при этом часть выходного напряжения появляется на неинвертирующем входе.

Величина обратной связи определяется коэффициентом сопротивления двух используемых резисторов (в данной конкретной ситуации соотношение будет равным).

Мы можем вычислить пороговые напряжения следующим образом:

Учитывая v D = 0, v в V Th , получаем следующие пороги:

Настройка оборудования:

Постройте следующую макетную схему для инвертирующего гистерезисного компаратора.

Рисунок 9. Макетная схема инвертирующего гистерезисного компаратора.

Процедура:

Используйте первый генератор сигналов в качестве источника Vin для обеспечения возбуждения синусоидальной волны с амплитудой 6 В от пика до пика 1 кГц в схему.Подайте на операционный усилитель +/- 5 В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

Пример графика представлен на рисунке 10.

Рис. 10. Форма сигнала инвертирующего гистерезисного компаратора.

Рисунок 11. График XY инвертирующего гистерезисного компаратора.

На рисунке 11 вы можете наблюдать характеристику передачи напряжения неинвертирующего гистерезисного компаратора (нарисованные стрелки указывают поток сигнала относительно пороговых значений).

Инвертирующий компаратор гистерезиса с асимметричными порогами

Фон:

Рассмотрим схему, представленную на рисунке 12.

Рисунок 12. Инвертирующий гистерезисный компаратор с асимметричными порогами.

Для инвертирующего компаратора с асимметричной схемой порогов на рисунке 12 используется дополнительное опорное напряжение Vref. Резисторы R1 и R2 образуют цепь делителя напряжения на компараторе, обеспечивая положительную обратную связь, при этом часть выходного напряжения появляется на неинвертирующем входе, а часть Vref проходит через тот же делитель.

Мы можем вычислить пороговые напряжения следующим образом:

Учитывая v D = 0, v в V Th , получаем следующие пороги:

Настройка оборудования:

Постройте следующую макетную схему для инвертирующего гистерезисного компаратора.

Рисунок 13. Инвертирующий гистерезисный компаратор с макетной платой асимметричных порогов.

Процедура:

Используйте первый генератор сигналов в качестве источника Vin, чтобы обеспечить возбуждение синусоидальной волны амплитудой 6 В от пика до пика 1 кГц для схемы и второй генератор сигналов в качестве постоянного опорного напряжения 1 В.Подайте на операционный усилитель +/- 5 В от источника питания. Настройте осциллограф так, чтобы входной сигнал отображался на канале 1, а выходной сигнал отображался на канале 2.

Пример графика представлен на рисунке 14.

Рисунок 14. Инвертирующий гистерезисный компаратор с асимметричными пороговыми значениями Форма волны

Рисунок 15. Инвертирующий гистерезисный компаратор с асимметричными порогами XY график.

На рисунке 15. вы можете наблюдать характеристику передачи напряжения неинвертирующего гистерезисного компаратора (нарисованные стрелки указывают поток сигнала относительно пороговых значений).

Вопросы

  1. Вычислите пороговые напряжения для всех четырех схем компаратора (простой, неинвертирующий гистерезис, инвертирующий гистерезис, асимметричные пороги) и сравните результаты с результатами, полученными на экспериментальных установках.

Для экспериментаторов, которые заканчивают работу раньше или хотят выполнить дополнительную задачу, посмотрите, можете ли вы изменить схему компаратора, используя красный и зеленый светодиоды (из последней лаборатории) на выходе, чтобы красный светодиод загорался при отрицательном напряжении, а зеленый светодиод светился при положительном. напряжения.Уменьшите частоту до 1 Гц (или меньше), чтобы вы могли видеть, как они включаются и выключаются в реальном времени. Не забывайте, что для светодиодов потребуется токоограничивающий резистор, чтобы ток через него не превышал 20 мА.

Вы также можете распространить приведенный выше пример на схему с несколькими уровнями напряжения, как показано на рисунке 16.

Рисунок 16. Индикатор уровня напряжения с использованием светодиодов.

Материалы:

ADALM2000 Active Learning Module
Макетная плата без пайки и комплект перемычек
3 резистор 470 Ом
1 резистор 10 кОм
2 резистор 20 кОм
3 светодиода (красный, зеленый, желтый)
1 ADTL082 (2 встроенных операционных усилителя)

В схеме используется делитель (R 1 , R 2 , R 3 ) для получения одного порога для каждого из двух компараторов.В зависимости от этих пороговых значений и входного напряжения будет гореть один светодиод (D 1 , D 2 , D 3 ).

Упражнения:

1. Вычислите пороговые напряжения в соответствии со схемой на рисунке 16. Определите для каждого диапазона входного напряжения, какой светодиод будет гореть.

2. Соберите макетную схему. Подайте на операционный усилитель +/- 5 В от источника питания. Используйте первый канал генератора сигналов для генерации переменного входного напряжения ( В, в ), а второй канал — для генерации постоянного опорного напряжения 5 В.

Рисунок 17. Индикатор уровня напряжения с помощью светодиодов.

Измените входное напряжение от 0 до 5 В и наблюдайте за поведением светодиодов.

Этот тип схемы также известен как оконный компаратор. Приложение по этой теме можно найти в упражнении: Контроль температуры с помощью оконного компаратора.

Дополнительная литература

Некоторые дополнительные ресурсы по операционным усилителям в качестве компараторов:

Вернуться к содержанию лабораторной деятельности

Компаратор напряжения LM311 — журнал DIYODE

Эта ИС представляет собой способ с малым количеством компонентов для сравнения двух напряжений сигнала или сигнала и опорного сигнала и включения или выключения выхода.

Компараторы

выполняют очень специфическую работу, которая дает производителям некоторые преимущества, которые могут быть не сразу очевидны. Сравнение напряжений или переключение на пороге может быть выполнено с помощью аналого-цифрового преобразователя (АЦП), встроенного в Arduino и Raspberry Pi, но мы обсудим позже некоторые очень веские причины, по которым вы можете захотеть сделать это извне.

Мы уже сталкивались с компаратором раньше, когда обсуждали операционные усилители (операционные усилители), и мы даже делали их из операционных усилителей в проектах.Однако интегральная схема (ИС) LM311 — это специализированное устройство, которое выполняет только эту работу, и делает это хорошо. Конечно, не каждый читатель будет знаком с операционными усилителями или предыдущими статьями, поэтому вот очень краткое резюме.

Операционные усилители — это ИС с высокоомными входами, что означает, что они чувствительны к напряжению, а не к току. Один вход является инвертирующим, а другой — неинвертирующим, что означает, что положительное напряжение на инвертирующем входе вызовет отрицательное напряжение на выходе, а положительное напряжение на неинвертирующем входе вызовет положительное напряжение на выходе.Обратное также верно. Операционные усилители часто питаются от положительного и отрицательного источника питания с разделенными шинами с нулевым заземлением посередине, что позволяет им работать как положительно, так и отрицательно. В случае одиночного рельса устраивается синтетический грунт.

Операционные усилители

можно использовать в качестве компаратора, в котором один вход сравнивается с другим, а на выходе устанавливается высокий или низкий уровень в зависимости от ситуации на входах. Операционные усилители имеют много других режимов работы, но в этой статье речь идет о компараторе.

Обычно это делается с помощью делителя напряжения для получения известного напряжения и последующей подачи его на один из входов. Другой используется для измерения целевого сигнала, например напряжения на датчике. Выходной сигнал будет высоким или низким, в зависимости от настройки, когда напряжение датчика поднимется выше или ниже опорного значения.

Компараторы напряжения

, такие как LM311, делают это с высокой точностью, быстрым откликом и минимальным количеством внешних компонентов. LM311 разработан с учетом универсальности, поскольку он может работать в диапазоне напряжений питания, включая +/- 15 В постоянного тока и + 5 В постоянного тока для логических цепей.К сожалению, минимальное рабочее напряжение исключает работу 3,3 В. Выходы имеют достаточно высокий рейтинг, чтобы управлять некоторыми нагрузками без дополнительного усиления.

Как всегда, полезно иметь копию таблицы данных производителя микросхемы. Мы всегда резюмируем наиболее актуальную информацию для нашей аудитории производителей, но в таблицах данных всегда есть больше. Мы использовали документ LM111 / LM211 / LM311 компании Texas Instruments, отредактированный в марте 2017 года. Хотя спецификации должны быть одинаковыми для всех производителей, расположение информации и объем информации могут отличаться.

Примечание. Чтобы узнать больше об операционных усилителях, вы можете обратиться к нашим предыдущим статьям в классе, включая «Операционные усилители — суперэлектронный строительный блок» из выпуска 7, январь 2018 г., или «Операционные усилители … еще раз» из выпуска 13, июль. 2018.

Хотя мы очень кратко описали работу компараторов, здесь мы дадим немного более подробную информацию. Базовый компаратор имеет пять соединений: инвертирующий вход, неинвертирующий вход, а также выход, положительный источник питания и отрицательный источник питания.Поскольку LM311 может работать от однорельсового питания, и мы собираемся использовать его таким образом, мы будем двигаться вперед именно так.

В базовом операционном усилителе измеряемым параметром является разность напряжений между двумя входами. Разница в том, что усиливается и передается на выход, а не в фактических напряжениях на входах. В компараторе разница не измеряется как таковая, а сравнивается, и выход полностью включен или полностью выключен в зависимости от разницы между входами.

Если напряжение на неинвертирующем входе больше положительного, чем напряжение на инвертирующем входе, выход включен.Если напряжение на неинвертирующем входе меньше положительного, чем напряжение на инвертирующем входе, выход выключен. Другими словами, если разница между входами положительная, выход полностью включен, независимо от того, насколько велика или мала разница.

Здесь есть нюанс. В большинстве случаев выход либо полностью включен, либо выключен. Однако есть небольшой участок отклика около порога пересечения эталона, где отклик фактически не является абсолютным.

Вы нечасто увидите это на практике, но мы столкнулись с этим при разработке проекта световой банки, основанного на схеме Класса этого месяца. График на рис. 8 в таблице данных показывает, что имеется короткий крутой отклик, который является почти линейным. Полный эффект охватывает менее милливольта на входе, поэтому он не будет беспокоить большинство пользователей слишком часто.

ИСТОЧНИК: Texas Instruments

Обратите внимание, что мы не включили подключения источника питания в эти схемы. Это связано с тем, что информация действительна для компараторов в целом, в том числе для компараторов, изготовленных с внешними компонентами от дискретных операционных усилителей, независимо от того, работают ли они от биполярного (с двумя шинами) или от однополярного (с одной шиной) питания.

Это также означает, что напряжения на обоих входах могут быть отрицательными, но пока разница положительная, выход включен.

Для большинства производителей подходят варианты блоков питания LM311. Он будет работать легко с минимальными усилиями от одинарного источника питания +5 В, чего нельзя сказать обо всех операционных усилителях и компараторах. Хотя большинство операционных усилителей и их производных можно заставить работать от одной шины, эти устройства, предназначенные для этого, упрощают проектирование схем.Потребление тока различается для разных ситуаций питания, но было измерено на рабочем столе как 1,19 мА от источника питания + 5 В без нагрузки.

LM311 — довольно старое устройство, и максимальный входной дифференциал (разница между напряжениями на входах) составляет 30 В (+/- 15 В). Это заметно меньше, чем напряжение питания 36 В (+/- 18 В), и иногда указывается как фактор, отвлекающий от устройства. Это может быть правдой для инженеров, но для большинства производителей это не имеет значения.

Большинство наших проектов питаются от 5 В или 12 В, с небольшими проектами на 24 В.Поскольку это обычно однорельсовые источники питания, в этих случаях не возникнет ситуации, когда разрыв между максимальной входной разностью и максимальным напряжением питания станет проблемой. Это по-прежнему хороший выбор, потому что он прочный, простой и очень легко доступен для розничной продажи. Немногие другие компараторы можно купить без рецепта в местном магазине электроники.

Как и все операционные усилители и их производные устройства, LM311 имеет входы с очень высоким импедансом, с максимальным требуемым входным током 300 нА, с типичным значением 100 нА.Время переключения также варьируется в зависимости от условий входа и выхода, но все цифры в таблицах и графиках таблицы данных ниже 200 нс, и даже при больших диапазонах напряжения питания и сигнала наибольшее значение, которое мы нашли в любой литературе, было менее 1 мс для полного размаха. .

На упрощенной схеме показан выход LM311 в виде N-канального транзистора с открытыми выводами коллектора и эмиттера. Он может обрабатывать максимум 40 В при 50 мА, что означает, что он может переключать многие реле самостоятельно или использоваться с внешним транзистором для переключения больших нагрузок.

Глядя на функциональную блок-схему на странице 10 таблицы данных, можно увидеть, что на выходе задействовано больше транзисторов и несколько резисторов. Поскольку выход не является действительно плавающим транзистором, нагрузка должна быть привязана к Vcc +, GND или Vcc-, в зависимости от источника питания и требований проекта. Для наших целей выход эмиттера подключается прямо к земле, а нагрузка подключается к коллектору. Хотя есть и другие способы использования этих контактов и причины для их соответствия, они выходят за рамки данной статьи.

На розничном рынке LM311 поставляется в 8-контактном пластиковом корпусе с двойным расположением выводов (DIP). Возможно, удастся найти и версии для поверхностного монтажа, но мы не смогли найти для них австралийского продавца. Существуют и другие пакеты, указанные в таблицах данных, с которыми вы можете столкнуться при поиске, если покупаете не у наших постоянных поставщиков. Обычно они доступны только на коммерческой основе.

Для однорельсового питания вывод Vcc- становится контактом заземления, в то время как контакт Vcc + сохраняет свою роль.Другими выводами, которые могут потребовать дальнейшего объяснения, являются выводы BALANCE и BAL / STRB. Балансирный штифт используется для внешнего смещения неинвертирующего входа. Все производимые устройства имеют степень допуска, с которой мы знакомы по резисторам и транзисторам. LM311 ничем не отличается, а балансирный штифт используется для ручной регулировки при пересечении нуля. Хотя хорошо знать, что это делает, в схемах производителей он не часто используется.

Вывод баланса / строба имеет дополнительную функцию — его заземление отключает выход независимо от состояния входа.Это можно использовать как ручную коррекцию для отключения выхода. Хотя мы будем использовать выключатель питания для отключения нашей сборки позже в схеме, вход строба может быть полезен для схем на основе микроконтроллеров, где LM311 может использоваться в качестве цифрового входа.

Как правило, два контакта остаются неподключенными или закороченными, чтобы избежать ложной активности.

На практике использовать компаратор довольно просто. На один из входов необходимо подать опорное напряжение, и это обычно делается с помощью делителя напряжения.На другой вход подается контролируемое напряжение. В большинстве приложений опорное напряжение подключается к неинвертирующему входу, а контролируемый сигнал подключается к инвертирующему входу.

Поскольку мы ориентируемся на использование одинарной шины питания, контакт Vcc + подключается к положительной шине питания, а Vcc- подключается к земле или шине 0 В. Эмиттер выхода должен подключаться к земле, а коллектор — к отрицательной стороне нагрузки.Помните, что выход может выдерживать ток 50 мА, поэтому, если ваша нагрузка не ограничена этим или ниже по току, вам нужно будет либо использовать транзистор, либо ограничить ток нагрузки с помощью резистора, если это возможно.

Обратите внимание, что, поскольку выход LM311 представляет собой N-канальный транзистор, существует несколько способов увеличения тока на выходе. На схеме 4A мы использовали транзистор PNP. Отображается текущий поток в ВЫСОКОМ состоянии (выход включен).

На схеме 4B мы использовали транзистор NPN.Как правило, транзисторы NPN не используются в качестве переключателей на стороне высокого напряжения, потому что ток базы должен течь через эмиттер на землю, и это может быть проблематично.

Использование их в качестве переключателя нижнего уровня также может привести к довольно небольшому сопротивлению транзистора в его «включенном» состоянии, что приведет к несовершенному заземлению, если вы включаете или выключаете всю схему с помощью выходного транзистора. Светодиод не будет заботиться, но микроконтроллер или другая чувствительная схема, вероятно, будет. Таким образом, переключатель высокого напряжения подходит для определенных приложений, а транзистор PNP следует использовать для переключателя высокого уровня.

Возможно использование транзистора NPN в качестве переключателя высокого напряжения. Однако, если в управляемой цепи есть что-то, что означает, что базовый ток не может легко течь на землю, например, в цепи с высоким сопротивлением или с обратной ЭДС от индуктивной нагрузки, транзистор не будет работать правильно.

В прошлом мы использовали транзистор NPN в качестве переключателя высокого напряжения с очень простыми нагрузками с низким сопротивлением, такими как светодиоды. Иногда это делается по редакционным причинам, а не по техническим причинам.

В простых схемах может быть сложно придумать что-то, чего еще нигде не существует, и выполнение таких вещей, как создание переключателя высокого напряжения с NPN, а не PNP транзистора, может помочь избежать слишком большого сходства с уже опубликованным материалом. Так что, хотя вы можете видеть, что это сделано, это не должно быть первым откликом.

* Указано количество, возможна продажа упаковками. Вам также понадобится макетная плата и оборудование для создания прототипов, а также блок питания по выбору в пределах допустимого напряжения.Подойдет обычный настольный блок питания или блок питания на 12 В.

В этом месяце мы собираемся представить очень простую сборку, но мы собираемся модифицировать ее по мере продвижения. Мы будем использовать его, чтобы изучить поведение LM311 с различными конфигурациями входа. Схема будет нашей отправной точкой, а результат останется прежним. Это просто светодиод, который сообщает нам, что происходит. Мы будем использовать LDR в качестве входного датчика, сначала с делителем напряжения с фиксированным резистором, а затем с потенциометром, дающим переменное опорное напряжение.

Сборка особенно проста, потому что мы собираемся использовать то, что узнали, в отдельном проекте. В выпуске №039 наш проект Firefly Light Jar использует LDR с компаратором LM311 для включения светодиодной цепочки, когда уровень окружающего освещения упал до выбранного уровня. Обязательно зацените.

Мы обнаружили, что LDR различаются, поэтому вам может потребоваться изменить номинал резистора R1 в соответствии с требованиями. Наш LDR измерял сопротивление 141 Ом на полном зимнем солнце и более 40 МОм в полной темноте при наличии только подсветки мультиметра в комнате.В тени за окнами в солнечный день мы измерили 850 Ом, а если приложить руку к поверхности LDR в тех же условиях, мы получили 4348 Ом. По этой причине мы сделаем наш делитель напряжения с LDR и резистором 2,4 кОм.

Сначала соедините макетную плату и компоненты, как показано на схеме, и подключите ее.

Обратите внимание, что происходит, когда вы закрываете LDR. Сколько вам нужно покрыть, чтобы схема активировалась? Вам нужно отбросить тень или почти полностью обернуть ее черной лентой? R2 и R3 должны быть одинаковыми по величине, поэтому напряжение на их стыке с неинвертирующим входом составляет половину напряжения питания.

Пришло время внести изменения. Первое изменение будет заключаться в замене делителя напряжения с постоянным резистором на потенциометр. Снимите R2 и R3 и подключите потенциометр как VR1 с одним концом, подключенным к шине питания, другим концом, подключенным к шине заземления, а стеклоочиститель подключен к неинвертирующему входу LM311, контакт 2.

Теперь вы можете настроить опорное напряжение так, чтобы выходной светодиод загорался, когда вы этого хотите. Попробуйте настроить VR1 так, чтобы светодиод включался только с отбрасыванием тени на светодиод, а затем установите его так, чтобы вся цепь находилась в полностью темной комнате, чтобы светодиод включился.

Теперь, когда потенциометр контролирует опорное напряжение, мы можем исследовать, как положение компонентов влияет на схему. Поменяйте местами LDR1 и R1 и посмотрите, как это повлияет на схему. Как далеко и каким образом вам нужно отрегулировать потенциометр, чтобы цепь сработала?

Вернитесь к исходной конфигурации LDR1 и R1, но подключите соединение LDR1 и R1 к неинвертирующему входу, а стеклоочиститель потенциометра — к инвертирующему входу.Как теперь ведет себя схема?

Теперь, когда у вас есть возможность поэкспериментировать и изучить поведение LM311, вы сможете лучше решить, как использовать его в проектах. Конечно, мы исследовали LDR только как датчик, но все, что работает в пределах входного напряжения, будет работать. Пьезоизмерительный датчик силы, датчик Холла, датчик приближения с ИК-светодиодом — все они могут использоваться с LM311. Возраст устройства имеет некоторые ограничения, но для большинства производителей они не имеют большого значения, если вообще имеют значение.В сочетании с доступностью без рецепта, LM311 по-прежнему остается универсальным и полезным устройством для производителя.

Не забывайте в ближайшем будущем следить за нашим проектом Firefly Light Jar, основанным на схеме, которую мы изучали в этом выпуске Класса.

Цепи компаратора

| 2 важных типа | инвертирование

Первоначальным загрузчиком изображения на обложке был — Zephyris из английской Википедии., Microchips, CC BY-SA 3.0

Содержание

Что такое схема компаратора?

Компаратор или компаратор напряжения — это устройство, используемое для сравнения двух уровней напряжения.Мы можем определить, какой уровень напряжения выше, по выходу компаратора. Это применение типичных операционных усилителей, и, кроме того, у него есть приложения.

Что делает схема компаратора?

Компаратор сравнивает два заданных входных напряжения и выдает выходной сигнал, указывающий, какое напряжение имеет более высокое значение. Схема принимает вход с помощью инвертирующих и неинвертирующих клемм и обеспечивает выход с выходной клеммы. Выходной диапазон лежит между положительным напряжением насыщения и отрицательным напряжением насыщения.

Схема компаратора | Схема компаратора операционного усилителя

На рисунке ниже представлена ​​принципиальная схема схемы компаратора. Как мы можем заметить, схема содержит только операционный усилитель, и входное напряжение подается в нее через инвертирующие и неинвертирующие клеммы.

Схема компаратора

Схема компаратора разработана с использованием операционного усилителя. Для его готовности к работе предусмотрены входные напряжения. В нем нет встроенной системы обратной связи.Опорное напряжение и сигнал напряжения подаются через операционный усилитель. Также предусмотрены входы положительного и отрицательного напряжения насыщения. Ориентировочный выходной сигнал собирается с выхода операционного усилителя.

Как работает схема компаратора?

Принцип работы компаратора довольно прост. Как правило, он сравнивает два источника напряжения и обеспечивает большую мощность. Ниже упомянутые два пункта констатируют работу.

  • Если напряжение на неинвертирующей клемме выше, чем напряжение на инвертирующей клемме, выход переключается на положительное напряжение насыщения операционного усилителя.
  • Если напряжение инвертирующей клеммы выше, чем напряжение на неинвертирующей клемме, выход переключается на отрицательное напряжение насыщения операционного усилителя.

Схема компаратора напряжения с ОУ 741

ОУ 741 — это интегральная схема, содержащая ОУ. Компаратор напряжения может быть создан с использованием ОУ 741. На изображении ниже представлена ​​принципиальная схема неинвертирующего компаратора напряжения с ОУ 741.

Компаратор с ОУ 741 Блок-схема компаратора

Работа компаратора может быть представлена ​​с помощью блок-схемы.На следующем изображении представлена ​​блок-схема компаратора. Блок-схема компаратора

. Реле цепи компаратора

.

. Реле

— это переключатели, которые могут управлять цепью. Он может включать или выключать цепь, а также подключать и отключать цепь от другой цепи. Компаратор широко используется в качестве реле.

схема компаратора использует

компаратор — ценное и важное устройство. Есть несколько применений компараторов. Некоторые применения компараторов перечислены ниже.

  • Детектор нуля: если значение равно нулю, детектор нуля обнаруживает его. Компаратор обычно представляет собой усилитель с высоким коэффициентом усиления, а для управляемых входов компаратор подходит для обнаружения нуля.
  • Сдвигатель уровня: Сдвигатель уровня может быть сконструирован с использованием одного операционного усилителя. Используя подходящее подтягивающее напряжение, схема обеспечивает большую гибкость при выборе интерпретируемых напряжений.
  • Аналого-цифровой преобразователь (АЦП): Компараторы используются для создания аналого-цифровых преобразователей.В преобразователе выход показывает, какое напряжение выше. Эта операция аналогична 1-битному квантованию. Именно поэтому компараторы используются практически в каждом аналого-цифровом преобразователе.
  • Помимо упомянутых приложений, существует множество других компараторов, таких как — Осциллятор релаксации, в детекторах абсолютного значения, в детекторах перехода через ноль, в оконных детекторах и т. Д. . Микросхема LM311 является таким примером нечеткого компаратора.Мы обсудим это позже, когда речь идет о LM311.

    Как сделать компаратор?

    Компаратор — это конкретное и простое в изготовлении электрическое устройство. Чтобы построить компаратор, нам понадобится операционный усилитель и напряжения питания. Сначала на операционный усилитель подается положительное и отрицательное напряжение насыщения. Выход будет изменяться в этом диапазоне напряжений. Затем вводятся их инвертирующие и неинвертирующие клеммы. Опорное напряжение подается на неинвертирующий терминал, а входное напряжение — на инвертирующий терминал.С этой схемой не связана система обратной связи.

    Схема компаратора напряжения

    Схема компаратора может обнаруживать высокие значения напряжений между двумя напряжениями. Компараторы, которые обычно сравнивают с напряжениями, известны как схема компаратора напряжения.

    Принципиальная схема фазового компаратора

    Фазовый компаратор — это аналоговая логическая схема, способная к смешиванию и умножению. Он обнаруживает разность фаз между двумя заданными сигналами, генерируя сигнал напряжения.На изображении ниже представлена ​​принципиальная схема фазового компаратора.

    микросхемы компаратора

    Как упоминалось ранее, компаратор сравнивает два сигнала напряжения и выдает ориентировочный выходной сигнал. Компараторы встроены в интегральную схему для удобства использования. На изображении ниже представлены схемы для компаратора ic.

    Типичная микросхема компаратора

    Схема компаратора lM358

    lm358 представляет собой микросхему компаратора, состоящую из двух компараторов внутри нее. Он имеет восемь контактов.Эта микросхема не требует какого-либо независимого внешнего источника питания для работы каждого компаратора. Принципиальная схема микросхемы приведена ниже.

    LM358 Компаратор IC

    внутренняя схема компаратора

    Компаратор разработан с использованием операционного усилителя — операционного усилителя в качестве дополнительной схемы. Внутренняя схема внутри микросхемы приведена ниже на схеме. Наблюдая за схемой, мы видим, что она состоит в основном из транзисторов, диодов и резисторов. Внутреннюю схему можно разделить на три части в зависимости от их работы.Это входной каскад, каскад усиления и выходной каскад.

    Схема компаратора | Схема транзисторного компаратора

    Принципиальная схема компаратора приведена ниже. Внутренняя принципиальная схема такая же, как и схема внутреннего компаратора. В нем есть диоды, транзисторы и резисторы. Компоненты с внутренним подключением работают как компаратор.

    Схема компаратора триггера Шмитта

    Триггер Шмитта — это вирусная схема, используемая для повышения помехоустойчивости и снижения вероятности множественного переключения.

    Триггер Шмитта — это схема компаратора с отдельными уровнями переключения входов для изменения выходов. Схема компаратора триггера Шмитта изображена на диаграмме ниже.

    555 схема компаратора таймера

    555 таймер представляет собой схему генератора. Он известен как таймер 555, поскольку в нем есть три резистора по 5 кОм, которые внутренне подключены для обеспечения опорных напряжений для обоих компараторов схем таймера. Микросхема таймера A555 используется в таймерах задержки, светодиодных индикаторах, генерации импульсов и т. Д.Базовая блок-схема микросхемы таймера 555 приведена ниже. Есть два компаратора, транзистор NPN, триггер, три резистора 5 кОм и выходной драйвер. Схема компаратора

    с использованием lm324

    lm324 — это микросхема операционного усилителя общего назначения с четырьмя операционными усилителями внутри. Его также можно использовать в качестве компаратора. Операционные усилители обладают более высокой стабильностью и более широкой полосой пропускания. LM324 имеет 14 контактов. Схема выводов lm324 приведена ниже.

    Выход третьего компаратора

    4-й вход компаратора

    No контакта Описание
    1 Выход первого компаратора
    2 Вход инвертирующего первого компаратора
    3 Первый

    3 Напряжение питания 5 В
    5 Неинвертирующий вход второго компаратора
    6 Инвертирующий вход второго компаратора
    7 Выход второго компаратора

    9 Инвертирующий вход третьего компаратора
    10 Неинвертирующий вход третьего компаратора
    11 Контакт заземления (GND)
    12
    13 Четверть h Инвертирующий вход компаратора
    14 Выход четвертого компаратора

    Принципиальная схема компаратора LM324 изображена на диаграмме ниже.

    lm139 схема компаратора

    lm139 — еще одна микросхема компаратора. Он имеет четыре отдельных прецизионных компаратора. Микросхема предназначена для работы от одного источника питания. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой и комплементарной МОП-логикой. IC имеет задержку распространения 0,7 микросекунды.

    На изображении ниже изображена внутренняя принципиальная схема компаратора lm139.

    Схема компаратора lm319

    lm319 — еще одна микросхема компаратора, имеющая 14 контактов.Он имеет два отдельных прецизионных компаратора. Микросхема предназначена для работы в широком диапазоне напряжений питания. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой и комплементарной МОП-логикой, RTL, DTL. IC имеет задержку распространения 0,025 микросекунды.

    Схема компаратора напряжения lm311

    lm311 — еще одна микросхема компаратора, имеющая восемь контактов. Имеет единственный компаратор. Микросхема имеет время отклика минимум 0,200 наносекунды и типичное усиление напряжения 200.

    На изображении ниже показана внутренняя принципиальная схема компаратора lm311.

    LM 311 Компараторы

    Схема компаратора lm339

    lm339 — еще одна микросхема компаратора. Он имеет четыре отдельных прецизионных компаратора. Микросхема предназначена для работы от одного источника питания и для широкого диапазона напряжений. Он специально разработан для прямого взаимодействия с транзисторно-транзисторной логикой, дополнительной МОП-логикой и DTL, ECL, MOS-логикой. IC имеет задержку распространения 0.7 микросекунд.

    Пример схемы компаратора ОУ

    Компараторные схемы ОУ используются в различных приложениях. Например, чтобы убедиться, что входное значение достигло пика или определенного значения или нет, или для квантования в АЦП, также в оконных детекторах, детекторах перехода через нуль и т. Д.

    Схема компаратора окна напряжения

    Компаратор окна относится к схеме, которая работает только в определенном кадре, окне или напряжении. Компаратор напряжения сравнивает два сигнала и выдает выходной сигнал.Для схемы оконного компаратора существует так называемый сэндвич-эффект: если входное напряжение становится выше, чем опорное напряжение низкого уровня. Цепь включена, и если входное напряжение становится выше, чем опорное напряжение высокого уровня, тогда цепь ВЫКЛЮЧЕНА.

    Компоненты, необходимые для компаратора окна напряжения:

    • Операционные усилители LM741 (2)
    • 4049 Чип инвертора (1)
    • Резистор 470 Ом (1)
    • 1N4006 Диоды (2)
    • LED
    • 902

      Схема компаратора окна напряжения показана на рисунке ниже.

      Схема компаратора с защелкой

      Компаратор с защелкой разработан с использованием защелки StrongArm. Защелка StrongArm считается первичным каскадом усиления решения. На следующем этапе используется фиксирующий элемент, несущий выходную нагрузку.

      Схема компаратора операционного усилителя с гистерезисом

      Разница между верхней и нижней точкой срабатывания является гистерезисом. Гистерезис основан на концепции триггера Шмитта.Если типичный компаратор разработан с положительной обратной связью, эта схема вызывает гистерезис. На изображении ниже изображена принципиальная схема.

      Схема рекуперативного компаратора

      Схема триггера Шмитта также называется схемами рекуперативного компаратора. Они используются для повышения помехоустойчивости и снижения вероятности многократного переключения схем регенеративного компаратора для разработки других сложных схем. Они используются в АЦП, схемах слайсеров, считывании памяти и т. Д. Принципиальная схема триггера Шмитта упоминается как принципиальная схема схемы рекуперативного компаратора.

      Схема температурного компаратора

      Температурная схема — это цифровая электронная схема, которая измеряет, ниже ли температура на входе заданной эталонной температуры. Это один из основных примеров схемы компаратора. Датчики температуры включают компаратор.

      Часто задаваемые вопросы

      1. Как работает схема компаратора?

      Ответ: Принцип работы компаратора довольно прост. Как правило, он сравнивает два источника напряжения и обеспечивает большую мощность.Ниже упомянутые два пункта констатируют работу.

      • Если напряжение на неинвертирующей клемме выше, чем напряжение на инвертирующей клемме, выход переключается на положительное напряжение насыщения операционного усилителя.
      • Если напряжение инвертирующей клеммы выше, чем напряжение на неинвертирующей клемме, выход переключается на отрицательное напряжение насыщения операционного усилителя.

      2. Типы схем компаратора

      Ответ: Есть несколько типов компараторов.Некоторые из широко используемых усилителей перечислены ниже.

      • Механические компараторы
      • Механические, оптические компараторы
      • Электронные компараторы
      • Пневматические компараторы

      3. Почему выходное напряжение в цепи компаратора операционного усилителя равно напряжению насыщения?

      Ответ: Цепи компаратора не имеют связанной с ними обратной связи. Таким образом, операционный усилитель имеет коэффициент усиления без обратной связи. Для идеального операционного усилителя коэффициент усиления без обратной связи бесконечен, а для практичного операционного усилителя коэффициент усиления очень высокий.Теперь напряжение насыщения типичных операционных усилителей составляет + — 15 В. Операционный усилитель насыщается при +13 или -13 В. Теперь операционный усилитель быстро насыщается при небольшом входном напряжении. Именно поэтому выходное напряжение в схеме компаратора равно напряжению насыщения.

      4. Почему в схеме компаратора операционного усилителя используется опорное напряжение

      Ответ: Производится сравнение двух или более величин. Чтобы указать, что более важно, нам нужна ссылка, чтобы решить. Нам нужно определить, какое напряжение более важно для компаратора.Вот почему для принятия решения используется опорное напряжение.

      5. Как схема цифрового компаратора различает меньшее и более значащее число

      Ответ: Цифровой компаратор сравнивает два двоичных числа.